

 [image: Hands-On Full-Stack Web Development with Angular 6 and Laravel 5]

Hands-On Full Stack Web Development with Angular 6 and Laravel 5

Become fluent in both frontend and backend web development with Docker, Angular and Laravel

Fernando Monteiro

BIRMINGHAM - MUMBAI

 Hands-On Full Stack Web Development with Angular 6 and Laravel 5

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Kunal Chaudhari

Acquisition Editor: Larissa Pinto

Content Development Editor: Aishwarya Gawankar

Technical Editor: Leena Patil

Copy Editor: Safis Editing

Project Coordinator: Sheejal Shah

Proofreader: Safis Editing

Indexer: Aishwarya Gangawane

Graphics: Jason Monteiro

Production Coordinator: Nilesh Mohite

First published: July 2018

Production reference: 1300718

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78883-391-2

www.packtpub.com

Eu dedico este livro a minha mãe Paschoalina Patrizzi da Silva, que luta contra o mau de Parkinson's e a Polineuropatia - durante os últimos anos e nunca perdeu o brilho no olhar de esperar por dias melhores e lutar a todo instante contra todos os efeitos colaterais das medicações e limitações impostas por essas terríveis doenças.

Mãe, você me inspira todos os dias da minha vida.

Do fundo do meu coração, muito obrigado,... Sou o que sou graças a você.

The previous paragraphs are to thank and honor my dear mother, who fights against Parkinson's disease and polyneuropathy. It was written in Portuguese so she can read and understand.

In addition, I thank my family for all support and understanding.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

	
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	
Improve your learning with Skill Plans built especially for you

	
Get a free eBook or video every month

	
Mapt is fully searchable

	
Copy and paste, print, and bookmark content

 PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Contributors

 About the author

Fernando Monteiro is a full-stack engineer, speaker, and open source contributor. He has

built and made some of his personal projects open source, such as Responsive Boilerplate,

Frontend Boilerplate, Angm-Generator, and TrelloMetrics, written in Angular, and Node.js.

With around 16 years of experience in information technology and software development, his current focus is on web and hybrid mobile enterprise JavaScript applications.

He began his career as a graphic designer and worked in the music industry for many years, performing creation and layout work for several record labels around the world such as; Nuclear Blast, Century Media, Listenable Rec, Hellion Records, and many others.

In addition, Fernando is a packt pub author, since 2013, and has published the following books - Instant HTML5 Responsive Table Design, Learning Single-page Web Application Development, AngularJS Directives Cookbook, Node.JS 6.x Blueprints, and Node.JS Projects.

When not programming, he enjoys riding motorcycles, making his own beer, and watching

movies with his family.

 About the reviewer

Sonny Recio is experienced developer with a five-year track record of commended performance in modular and object-oriented programming. He is well-versed in all phases of the software development life cycle, with a strong working knowledge of algorithms and data structures.

He gained five years of solid experience in C# and .NET/ASP.NET, along with writing web APIs and JavaScript in different industries.

You can find him on Twitter (YellowFlashDev), Instagram (yellowflashdev), GitHub (reciosonny).

I would like to personally thank my family, my loved ones, and my closest friends who pushed me further, and for their continued support throughout my career. Above all, I would like to thank God for everything I have. Without them, my accomplishments wouldn't have been possible.

 Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 Table of Contents

 	
 Title Page

	
 Copyright and Credits

 	
 Hands-On Full Stack Web Development with Angular 6 and Laravel 5

	
 Dedication

	
 PacktPub.com

 	
 Why subscribe?

	
 PacktPub.com

	
 Contributors

 	
 About the author

	
 About the reviewer

	
 Packt is searching for authors like you

	
 Preface

 	
 Who this book is for

	
 What this book covers

	
 To get the most out of this book

 	
 Download the example code files

	
 Download the color images

	
 Conventions used

	
 Get in touch

 	
 Reviews

	
 Understanding the Core Concepts of Laravel 5

 	
 Setting up the environment

 	
 Installing Composer package manager

	
 Installing Docker

	
 Configuring PHPDocker.io

	
 Setting up PHPDocker and Laravel

	
 Installing VS Code text editor

	
 The basic architecture of Laravel applications

 	
 Laravel directory structure

	
 The MVC flow

	
 Laravel application life cycle

	
 Artisan command-line interface

	
 MVC and routes

 	
 Creating models

	
 Creating controllers

	
 Creating views

	
 Creating routes

	
 Connecting with a database

 	
 Setting up the database inside a Docker container

	
 Creating a migrations file and database seed

	
 Using the resource flag to create CRUD methods

	
 Creating the Blade template engine

	
 Summary

	
 The Benefits of TypeScript

 	
 Installing TypeScript

 	
 Creating a TypeScript project

	
 Benefits of TypeScript

	
 Writing JavaScript code with static types

 	
 Creating a tuple

	
 Using the void type

	
 The opt-out type checking - any

	
 Using enum

	
 Using the never type

	
 Types: undefined and null

	
 Understanding interfaces, classes, and generics in TypeScript

 	
 Creating a class

	
 Declaring an interface

	
 Creating generic functions

	
 Working with modules

 	
 Using the class export feature

	
 Importing and using external classes

	
 Summary

	
 Understanding the Core Concepts of Angular 6

 	
 Angular 6 – smaller, faster, and easier

	
 Angular and the component method for developing modern web applications

 	
 Angular's main building blocks

	
 The component life cycle

	
 Installing the tools – Git, the Angular CLI, and VS Code plugins

 	
 Installing Git

	
 Installing the Angular CLI

	
 Installing VS Code Angular plugins

	
 Creating a simple Angular application

 	
 The structure of an Angular application

 	
 The package.json file

	
 Dotfiles – .editorconfig, .gitignore, and .angular-cli.json

	
 Environments

	
 Running the sample application

	
 Adding a new module

	
 Adding a new component

	
 Adding a new route

	
 Creating an Angular service

	
 Template data binding

	
 Simple deployment

	
 Summary

	
 Building the Baseline Backend Application

 	
 Additional notes about Laravel with Docker

 	
 Creating the Docker Compose foundation

 	
 Configuring nginx

	
 Configuring php-fpm

	
 Creating a docker-compose configuration file

	
 Building the application container

	
 Using PHP Composer to scaffold a Laravel application

 	
 Creating the application scaffold

	
 Running the application

	
 Setting up a MySQL database

 	
 Adding a storage folder

	
 Configuring the .env file

	
 Using a MySQL external client

	
 Migrations and database seed

 	
 Creating the migration boilerplate

	
 Creating our first database seed

	
 Exploring the Workbench table view

	
 API documentation with the Swagger framework

 	
 Installing the L5-Swagger library

	
 Creating the application API controller

	
 Generating and publishing the API documentation

	
 Adding Swagger definitions

	
 Summary

	
 Creating a RESTful API Using Laravel - Part 1

 	
 Preparing the application and understanding what we are building

 	
 Refactoring the application files

	
 What we are building

	
 The application's summary

	
 Creating models and migrations files

	
 Adding content to migration files

	
 Eloquent ORM relationship

 	
 One-to-one relationship

	
 One-to-many relationship

	
 Many-to-many relationship

	
 Seeding our database

	
 Querying the database using Tinker

	
 Creating controllers and routes

 	
 Creating and updating the controller function

	
 Creating the API routes

	
 Generating Swagger UI documentation

	
 Summary

	
 Creating a RESTful API Using Laravel - Part 2

 	
 Dealing with request validation and error messages

 	
 HTTP status code

	
 Implementing the Controllers validation

	
 Adding custom error handling

	
 Checking API URLs with the Swagger UI

 	
 Get all records

	
 Get record by ID

	
 Checking API response errors

	
 Token-based authentication

 	
 Installing tymon-jwt-auth

	
 Updating the User model

	
 Setting up the auth guard

	
 Creating the authController

	
 Creating user routes

	
 Protecting API routes

	
 Creating and logging in a User

	
 Dealing with Laravel resources

 	
 Creating BikesResource

	
 Creating BuildersResource

	
 Creating ItemsResource

	
 Creating ratingResource

	
 Adding resources to controllers

	
 Summary

	
 Progressive Web Applications with the Angular CLI

 	
 Starting a web application with the Angular CLI

 	
 Preparing the baseline code

	
 Scaffolding a web application with the Angular CLI

	
 Creating the directory structure

	
 Building the baseline for a PWA

 	
 Adding PWA features using ng add

	
 Understanding the key files in PWA

	
 PWA in action

 	
 Running the application in production mode

	
 Angular service – workers in action

	
 Debugging a progressive web application

	
 Creating boilerplate Angular components

 	
 Creating the home module and component

	
 Creating the bikes module and component

	
 Creating the builders module and component

	
 Preparing Auth routes – login, register, and logout components

	
 Creating a layout component

	
 Summary

	
 Dealing with the Angular Router and Components

 	
 Preparing the baseline code

	
 Adding components to our application

	
 Dealing with Angular routes

 	
 Creating authentication routes

	
 Creating home routing

	
 Configuring child routes for details pages

 	
 Adding builders child routes

	
 Adding bikers child routes

	
 Refactoring app.component.html

	
 Building frontend views

 	
 Creating the navigation component

	
 Creating the home view and template

	
 Creating the bikes router-outlet

	
 Creating the bike-list view and template

	
 Creating the bike-detail view and template

	
 Creating the builders router-outlet

	
 Creating the builder-list view and template

	
 Creating the builder-detail view and template

	
 Creating the login view and template

	
 Creating the register view and template

	
 Testing routes and views

	
 Summary

	
 Creating Services and User Authentication

 	
 Preparing the baseline code

	
 Dealing with models and classes

 	
 Creating the User class model

	
 Creating the builders class model

	
 Creating the Bike class model

	
 Using the new HttpClient to deal with XHR requests

 	
 Creating the auth service

 	
 Creating the Register function

	
 Creating the Login function

	
 Creating the Logout function

	
 Creating the setToken and getToken functions

	
 Creating the getUser function

	
 Creating the isAuthenticated function

	
 Creating the handleError function

	
 Creating the bikes service

 	
 Creating CRUD functions

	
 Creating the voteOnBike function

	
 Creating the handleError function

	
 Creating the builders service

	
 Dealing with the HttpErrorHandler service

 	
 Creating a handler error service

	
 Importing HttpErrorHandler into app.module.ts

	
 Refactoring the builders service

	
 Refactoring the bikes service

	
 How to use authorization headers

 	
 Creating an HTTP interceptor

	
 Adding AppHttpInterceptorService to the main module

	
 How to protect application routes with route guards

 	
 Creating the route guard for bike-detail

	
 Summary

	
 Frontend Views with Bootstrap 4 and NgBootstrap

 	
 Preparing the baseline code

	
 Installing the Bootstrap CSS framework

 	
 Removing the Bootstrap CSS import

	
 Adding Bootstrap SCSS imports

	
 Overriding Bootstrap variables

	
 Writing Angular templates with Bootstrap

 	
 Adding template bindings to the navigation component

	
 Adding template bindings to the login page

	
 Adding template bindings to the register page

	
 Adding template bindings to the bike-detail page

	
 Adding template bindings to the bike-list page

	
 Adding template bindings to the builder-detail page

	
 Adding template bindings to the builder-list page

	
 Setting up CORS on a Laravel backend

 	
 Setting up Laravel CORS

	
 Connecting Angular services with application components

 	
 Adding environment configuration

	
 Creating the navigation methods

	
 Creating the bike-detail methods

	
 Creating the bike-list methods

	
 Creating the builder-detail methods

	
 Creating the builder-list methods

	
 Dealing with Angular pipes, forms, and validation

 	
 Creating a pipe filter

 	
 Intoducing Angular forms

	
 Understanding Angular template-driven forms

 	
 Reviewing the login form template and component

	
 Understanding Angular reactive/model-driven forms

 	
 Reviewing the register form template and component

	
 Adding frontend form validation

 	
 Dealing with form validation on template-driven forms

	
 Dealing with form validation on model-driven forms

	
 Summary

	
 Building and Deploying Angular Tests

 	
 Preparing the baseline code

	
 Setting application linters

 	
 Adding stylelint for SCSS files

 	
 Adding new scripts to the package.json file

	
 Adding the .stylelintrc configuration

	
 Installing the Stylelint plugin for VS Code

	
 Setting VS Code for the new linter

	
 Applying stylelint rules on style.scss

	
 Fixing SCSS errors

	
 Adding TSLint-angular to the package.json file

	
 Creating linter tasks in package.json

	
 Understanding Angular tests

	
 Writing unit and e2e tests

 	
 Fixing unit tests

 	
 Fixing authGuard tests

	
 Fixing authService tests

	
 Fixing login tests

	
 Fixing register tests

	
 Fixing bike service tests

	
 Fixing bike-detail tests

	
 Fixing bike-list tests

	
 Fixing bike tests

	
 Fixing builders service tests

	
 Fixing builder-detail tests

	
 Fixing builder-list components

	
 Fixing builders tests

	
 Fixing home tests

	
 Fixing app tests

	
 Fixing app interceptor tests

	
 Adding unit tests

	
 Fixing e2e tests

	
 Application deployment

 	
 Creating Docker images for frontend applications

 	
 Creating a Dockerfile

	
 Creating an nginx file

	
 Creating npm building tasks

	
 Creating the bash script

	
 Running npm build scripts

	
 Reviewing Docker commands

 	
 Building the application for production

	
 Testing Docker images

	
 Summary

	
 Other Books You May Enjoy

 	
 Leave a review - let other readers know what you think

 Preface

Web Development has come a long way since its inception. Today we want web applications that are fast, robust, and engaging, and Progressive Web Applications (PWA) is the way to go ahead. In this book we are going to build powerful web applications using two of the most popular frameworks at our disposal, Angular and Laravel.

Angular is one of the most popular frontend JavaScript frameworks for creating modern and fast PWA. In addition to being very versatile and complete, Angular also includes the Angular CLI tool for generating modules, components, services, and many more utilities. On the other hand we have Laravel framework, a powerful tool for the development of web applications which explores the use of the paradigm convention over configuration.

This book gives you a practical knowledge of building modern full-stack web apps from scratch using Angular with a Laravel RESTful backend. It takes you through the most important technical facets of developing with these two frameworks and demonstrates how to put those skills into practice.

 Who this book is for

This book is for developers who are new to Angular and Laravel. Knowledge of HTML, CSS, and scripting languages such as JavaScript and PHP is required.

The book's content covers all of the phases of the software engineering life cycle by looking at modern tools and techniques, including – but not limited to – RESTful APIs, token-based authentication, database configurations, and Docker containers and images.

 What this book covers

Chapter 1, Understanding the Core Concepts of Laravel 5, introduces the Laravel framework as a powerful tool for the development of web applications and explores the use of the paradigm convention over configuration. We will see how, out of the box, Laravel has all of the features that we need to build modern web applications, token-based authentication, routes, resources, and more. Also, we will find out why the Laravel framework is one of the most popular PHP frameworks for developing web applications today. We will learn how to set up the environment, look at the Laravel application lifecycle, and see how to use the Artisan CLI.

Chapter 2, The Benefits of TypeScript, looks at how TypeScript enables you to write consistent JavaScript code. We examine the features that it includes, such as static typing and other features that are very common in object-oriented languages. Also, we look at using the new features of the latest version of ECMAScript, and find out TypeScript helps us to write clean and well-organized code. In this chapter, we will see the benefits of TypeScript over traditional JavaScript, discover how to use static typing, and understand how to use Interfaces, Classes, and Generics, as well as Import and Export classes.

Chapter 3, Understanding the Core Concepts of Angular 6, dives into Angular, which is one of the most popular frameworks for the development of frontend web applications. In addition to being very versatile and complete, Angular also includes the Angular CLI tool for generating modules, components, services, and many more utilities. In this chapter, we will learn how to use the new version of the Angular CLI, understand the core concepts of Angular, and get to grips with the component lifecycle.

Chapter 4, Building the Baseline Backend Application, is where we will start building the sample application. In this chapter, we are going to create a Laravel application using the RESTful architecture. We will take a closer look at some points that we mentioned briefly in the first chapter, such as the use of Docker containers to configure our environment and also how to keep our database populated. we will even check out how to use the MySQL Docker container, how to use migrations and database seed, and also how to create consistent documentation with Swagger UI.

Chapter 5, Creating a RESTful API Using Laravel - Part 1, will introduce RESTful APIs. You will learn how to build a RESTful API using the core elements of the Laravel framework—controllers, routes, and eloquent Object Relational Mapping (ORM). We also show some basic wireframes for the application we are building. In addition, we will look more closely at some relationships that you will need to be familiar with, such as one-to-one, one-to-many, and many-to-many.

Chapter 6, Creating a RESTful API Using Laravel - Part 2, continues our project of building a sample API, though, at that point, we will still have a long way to go in Laravel. We will learn how to use some features that are very common among web applications, such as token-based authentication, request validation, and custom error messages; we will also see how to use Laravel resources. Also, we will see how to use the Swagger documentation to test our API.

Chapter 7, Progressive Web Applications with Angular CLI, covers the changes that have affected angular-cli.json since the previous Angular version. The angular-cli.json file has now improved its support for multiple applications. We will see how to use the ng add a command to create a PWA and how we can organize our project structure to leave a single basis for a scalable project. Also, we will see how to use the Angular CLI to create service-work and manifest files.

Chapter 8, Dealing with Angular Router and Components, is where we come to one of the most important parts of Single-Page Applications (SPAs), which is the use of routes. Luckily, the Angular framework provides a powerful tool for dealing with application routing: the @angular/router dependency. In this chapter, we will learn how to use some of these features, such as router outlets and child-views, and we will see how to create master-detail pages. Also, we will start to create the frontend views.

Chapter 9, Creating Services and User Authentication, is one where we will create many new things, and we will be performing some refactoring to memorize import details. This is a great way to learn new things in a regular and progressive way. Also, we will dig deeper into the operation and use of the HTTP module of the Angular framework, now known as httpClient. In addition, we will look at interceptors, handling errors, using authorization headers, and how to protect application routes using route guards.

Chapter 10, Frontend Views with Bootstrap 4 and NgBootstrap, explains how to include the Bootstrap CSS framework and NgBootstrap components inside a running Angular application using the new ng add command from Angular CLI. Also, we will see how to connect our Angular services with components and how to use the backend API to put it all together. We will learn to configure CORS on our backend API, and how to use it with our Angular client-side application. We will also learn to deal with the Angular pipe, template-driven forms, model-driven forms, and form validations.

Chapter 11, Building and Deploying Angular Tests, covers how to install, customize, and extend the Bootstrap CSS framework, as well as how to use NgBootstrap components and how to connect Angular services with components and UI interfaces. We will learn to write Angular unit tests, configure application linters (for SCSS and Tslint) to maintain code consistency, create NPM scripts, and also create a Docker image and deploy the application.

 To get the most out of this book

Some knowledge of the command line, Docker, and MySQL would be very helpful; however, it is not fully required, as all commands and examples are accompanied by brief instructions.

You need to have the following tools installed on your machine:

	Node.js and NPM

	Docker

	A code editor—we recommend that you use Visual Studio Code

	Git source control is recommend but not required

 Download the example code files

You can download the example code files for this book from your account at www.packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

	Log in or register at www.packtpub.com.

	Select the SUPPORT tab.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR/7-Zip for Windows

	Zipeg/iZip/UnRarX for Mac

	7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Hands-On-Full-Stack-Web-Development-with-Angular-6-and-Laravel-5. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here https://www.packtpub.com/sites/default/files/downloads/HandsOnFullStackWebDevelopmentwithAngular6andLaravel5_ColorImages.pdf.

 Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here

is an example: "All PHP projects that use Composer have a file called composer.json at the root project."

A block of code is set as follows:

{
 "require": {
 "laravel/framework": "5.*.*",
 }
}

Any command-line input or output is written as follows:

composer create-project --prefer-dist laravel/laravel chapter-01

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "

"Search for the chapter-01 folder, and click Open."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

 Understanding the Core Concepts of Laravel 5

As the title of this chapter suggests, we will be providing a general overview of the Laravel framework, covering the main concepts related to the development of web applications using a web services architecture. More precisely, we will use a RESTful architecture in this book.

We assume that you already have a basic understanding of the RESTful architecture and how web services (here, we call them Application Programming Interface (API) endpoints) work.

However, if you are new in this concept, don't worry. We will help you get started.

The Laravel framework will be a helpful tool because with it, all of the data inside our controllers will be converted to the JSON format, by default.

The Laravel framework is a powerful tool for the development of web applications, using the paradigm convention over configuration. Out of the box, Laravel has all of the features that we need to build modern web applications, using the Model View Controller (MVC). Also, the Laravel framework is one of the most popular PHP frameworks for developing web applications today.

From now until the end of this book, we will refer to the Laravel framework simply as Laravel.

The Laravel ecosystem is absolutely incredible. Tools such as Homestead, Valet, Lumen, and Spark further enrich the experience of web software development using PHP.

There are many ways to start developing web applications using Laravel, meaning that there are many ways to configure your local environment or your production server. This chapter does not favor any specific way; we understand that each developer has his or her own preferences, acquired over time.

Regardless of your preferences for tools, servers, virtual machines, databases, and so on, we will focus on the main concepts, and we will not assume that a certain way is right or wrong. This first chapter is just to illustrate the main concepts and the actions that need to be performed.

Keep in mind that regardless of the methods you choose (using Homestead, WAMP, MAMP, or Docker), Laravel has some dependencies (or server requirements) that are extremely necessary for the development of web applications.

You can find more useful information in the official Laravel documentation at https://laravel.com/docs/5.6.

In this chapter, we will cover the following points:

	Setting up the environment

	The basic architecture of a Laravel application

	The Laravel application life cycle

	Artisan CLI

	MVC and routes

	Connecting with the database

 Setting up the environment

Remember, no matter how you have configured your environment to develop web applications with PHP and Laravel, keep the main server requirements in mind, and you will be able to follow the examples in this chapter.

It is important to note that some operating systems do not have PHP installed. As this is the case with Windows machines, here are some alternatives for you to create your development environment:

	HOMESTEAD (recommended by Laravel documentation): https://laravel.com/docs/5.6/homestead

	MAMP: https://www.mamp.info/en/

	XAMPP: https://www.apachefriends.org/index.html

	WAMP SERVER (only for Windows OS): http://www.wampserver.com/en/

	PHPDOCKER: https://www.docker.com/what-docker

 Installing Composer package manager

Laravel uses Composer, a dependency manager for PHP, very similar to Node Package Manager (NPM) for Node.js projects, PIP for Python, and Bundler for Ruby. Let's see what the official documentation says about it:

"A Composer is a tool for dependency management in PHP. It allows you to declare the libraries your project depends on and it will manage (install/update) them for you."

So, let's install Composer, as follows:

Go to https://getcomposer.org/download/ and follow the instructions for your platform.

You can get more information at https://getcomposer.org/doc/00-intro.md.

Note that you can install Composer on your machine locally or globally; don't worry about it right now. Choose what is easiest for you.

All PHP projects that use Composer have a file called composer.json at the root project, which looks similar to the following:

{
 "require": {
 "laravel/framework": "5.*.*",
 }
}

This is also very similar to the package.json file on Node.js and Angular applications, as we will see later in this book.

Here's a helpful link about the basic commands: https://getcomposer.org/doc/01-basic-usage.md

 Installing Docker

We will use Docker in this chapter. Even though the official documentation of Laravel suggests the use of Homestead with virtual machines and Vagrant, we chose to use Docker because it's fast and easy to start, and our main focus is on Laravel's core concepts.

You can find more information about Docker at https://www.docker.com/what-docker.

As the Docker documentation states:

Docker is the company driving the container movement and the only container platform provider to address every application across the hybrid cloud. Today’s businesses are under pressure to digitally transform, but are constrained by existing applications and infrastructure while rationalizing an increasingly diverse portfolio of clouds, datacenters, and application architectures. Docker enables true independence between applications and infrastructure and developers and IT ops to unlock their potential and creates a model for better collaboration and innovation.

Let's install Docker, as follows:

	Go to https://docs.docker.com/install/.

	Choose your platform and follow the installation steps.

	If you have any trouble, check the getting started link at https://docs.docker.com/get-started/.

As we are using Docker containers and images to start our application and won't get into how Docker works behind the scenes, here is a short list of some Docker commands:

	Command:
	Description:

	docker ps
	Show running containers

	docker ps -a
	Show all containers

	docker start
	Start a container

	docker stop
	Stop a container

	docker-compose up -d
	Start containers in background

	docker-compose stop
	Stop all containers on docker-compose.yml file

	docker-compose start
	Start all containers on docker-compose.yml file

	docker-compose kill
	Kill all containers on docker-compose.yml file

	docker-compose logs
	Log all containers on docker-compose.yml file

You can check the whole list of Docker commands at https://docs.docker.com/engine/reference/commandline/docker/. And Docker-compose commands at https://docs.docker.com/compose/reference/overview/#command-options-overview-and-help.

 Configuring PHPDocker.io

PHPDocker.io is a simple tool that helps us to build PHP applications using the Docker/Container concept with Compose. It's very easy to understand and use; so, let's look at what we need to do:

	Go to https://phpdocker.io/.

	Click on the Generator link.

	Fill out the information, as in the following screenshot.

	Click on the Generate project archive button and save the folder:

PHPDocker interface

The database configuration is as per the following screenshot:

Database configuration

Note that we are using the latest version of the MYSQL database in the preceding configuration, but you can choose whatever version you prefer. In the following examples, the database version will not matter.

 Setting up PHPDocker and Laravel

Now that we have filled in the previous information and downloaded the file for our machine, let's begin setting up our application so as to delve deeper into the directory structure of a Laravel application.

Execute the following steps:

	Open bash/Terminal/cmd.

	Go to Users/yourname on Mac and Linux, or C:/ on Windows.

	Open your Terminal inside the folder and type the following command:

composer create-project --prefer-dist laravel/laravel chapter-01

At the end of your Terminal window, you will see the following result:

Writing lock file
Generating autoload files
> Illuminate\Foundation\ComposerScripts::postUpdate
> php artisan optimize
Generating optimized class loader
php artisan key:generate

	In the Terminal window, type:

cd chapter-01 && ls

The results will be as follows:

Terminal window output

Congratulations! You have your first Laravel application, built with the Composer package manager.

Now, it's time to join our application with the file downloaded from PHPDocker (our PHP/MySQL Docker screenshot). To do so, follow the next steps.

	Grab the downloaded archive, hands-on-full-stack-web-development-with-angular-6-and-laravel-5.zip, and unzip it.

	Copy all of the folder content (a phpdocker folder and a file, docker-compose.yml).

	Open the chapter-01 folder and paste the content.

Now, inside the chapter-01 folder, we will see the following files:

chapter-01 folder structure

Let's check to make sure that everything will go well with our configuration.

	Open your Terminal window and type the following command:

docker-compose up -d

It's important to remember that at this point, you need to have Docker up and running on your machine. If you are completely new to how to run Docker on your machine, you can find more information at https://github.com/docker/labs/tree/master/beginner/.

	Note that this command may take more time to create and build all of the containers. The results will be as follows:

Docker containers up and running

The preceding screenshot indicates that we have started all containers successfully: memcached, webserver (Nginx), mysql, and php-fpm.

Open your browser and type http://localhost:8081; you should see the welcome page for Laravel.

At this point, it is time to open our sample project in a text editor and check all of the Laravel folders and files. You can choose the editor that you are used to, or, if you prefer, you can use the editor that we will describe in the next section.

 Installing VS Code text editor

For this chapter, and throughout the book, we will be using Visual Studio Code (VS Code), a free and highly configurable multiplatform text editor. It is also very useful for working with projects in Angular and TypeScript.

Install VS Code as follows:

	Go to the download page and choose your platform at https://code.visualstudio.com/Download.

	Follow the installation steps for your platform.

VS Code has a vibrant community with tons of extensions. You can research and find extensions at https://marketplace.visualstudio.com/VSCode. In the next chapters, we will install and use some of them.

For now, just install VS Code icons from https://marketplace.visualstudio.com/items?itemName=robertohuertasm.vscode-icons.

 The basic architecture of Laravel applications

As mentioned previously, Laravel is an MVC framework for the development of modern web applications. It is a software architecture standard that separates the representation of information from users' interaction with it. The architectural standard that it has adopted is not so new; it has been around since the mid-1970s. It remains current, and a number of frameworks still use it today.

You can read more about the MVC pattern at https://en.wikipedia.org/wiki/Model-view-controller.

 Laravel directory structure

Now, let's look at how this pattern is implemented within an application with Laravel:

	Open the VS Code editor.

	If this is the first time you are opening VS Code, click on the top menu and navigate to File | Open.

	Search for the chapter-01 folder, and click Open.

	Expand the app folder at the left-hand side of VS Code.

The application files are as follows:

Laravel root folder

The phpdocker folder and docker-compose.yml files are not part of the Laravel framework; we added these files manually, earlier in this chapter.

 The MVC flow

In a very basic MVC workflow, when a user interacts with our application, the steps in the following screenshot are performed. Imagine a simple web application about books, with a search input field. When the user types a book name and presses Enter, the following flow cycle will occur:

MVC flow

The MVC is represented by the following folders and files:

	MVC Architecture
	Application Path
	
	File

	Model
	app/
	
	User.php

	View
	resources/views
	
	welcome.blade.php

	Controller
	app/Http/Controllers
	
	Auth/AuthController.php

Auth/PasswordController.php

Note that the application models are at the root of the app folder, and the application already has at least one file for MVC implementation.

Also note that the app folder contains all of the core files for our application. The other folders have very intuitive names, such as the following:

	Bootstrap
	Cache, autoload, and bootstrap applications

	Config
	Application's configuration

	Database
	Factory, migrations, and seeds

	Public
	JavaScript, CSS, fonts, and images

	Resource
	Views, SASS/LESS, and localization

	Storage
	This folder has separated apps, frameworks, and logs

	Tests
	Unit tests using PHPunit

	Vendor
	
Composer dependencies

Now, let's see how things work in the Laravel structure.

 Laravel application life cycle

In a Laravel application, the flow is almost the same as in the previous example, but a little more complex. When the user triggers an event in a browser, the request arrives on a web server (Apache/Nginx), where we have our web application running. So, the server redirects the request into public/index.php, the starting point for the entire framework. In the bootstrap folder, the autoloader.php is started and loads all of the files generated by the composer retrieving an instance to the Laravel application.

Let's look at the following screenshot:

Laravel application cycle

The diagram is complex enough for our first chapter, so we will not get into all of the steps performed by the user's request. Instead, we will go on to another very important feature that is a main concept in Laravel: the Artisan command-line interface (CLI).

You can read more about the request life cycle in Laravel in the official documentation at https://laravel.com/docs/5.2/lifecycle.

 Artisan command-line interface

Nowadays, it is common practice to create web applications by using the command line; and, with the evolution of web development tools and technologies, this has become very popular.

We will mention that NPM is one of the most popular. However, for the development of applications using Laravel, we have an advantage. The Artisan CLI is automatically installed when we create a Laravel project.

Let's look at what the official documentation of Laravel says about the Artisan CLI:

Artisan is the name of the command-line interface included with Laravel. It provides a number of helpful commands for your use while developing your application.

Inside of the chapter-01 folder, we find the Artisan bash file. It's responsible for running all of the commands available on the CLI, and there are many of them, to create classes, controllers, seeds, and much more.
assets/0bfba06b-93cf-41eb-baa6-1162b0f4fe5d.png
PHPDocker.io beta News Generator Contact

Global configuration

Project stack-web-development-with-angular-6-and-laravel-5 Base port 8081 g
name

Application Generic: Symfony 4, Zend, Laravel, Lumen. J Max upload 100 0
type size (MB)

PHP configuration
PHP Version 72x J Extensions MysQL -
(PHP 7.2)
Q | search ®
of Add git (eg for composer)
) Memcached
Please note:
 The following extensions are already included on the base image: APC, 7 PostgresQL
CURL, JSON, MCrypt (sodium in PHP>=7.1), MBString, OPCache, Readline, ™) Redis
XML and Zip 7 saties
© Each PHP version supports a different set of extensions to the others. 0 Xpebug

* Adding git to the container adds ~75MB to it.

assets/f0eff070-8dd1-4a97-8c20-710ab5b5afc5.png
4 CHAPTER-01 hEo a

> @ app

> ui bootstrap

» o config

> #§ database

> wil phpdocker

> 4 public

> ol resources

» ol storage

> 4 tests

» ol vendor
.env
.env.example

]
]
& _gitattributes
*
[u}

.gitignore
artisan

composer.json
composer.lock
docker-compose.yml
quipfile.js
package.json
phpunit.xm!
readme.md
server.php

TEEEY

(]

assets/1bf73eab-92c2-4a84-978c-c5fae90f9155.png
Router

i—‘

Controller

]

View

Model

assets/01edcdbe-fc65-41f4-8285-35146807891e.png
Mapt

assets/460a8a5e-ccea-4297-8b42-84a7d4ce6066.png
app composer.json database phbunit.xml resources tests
artisan composer.lock gulpfile.js public server.php vendor
bootstrap config package. json readme.md storage

assets/cb7f983b-d19f-46a1-b284-0c317a4c3ee8.png
Server

P

public/index.php Controller View
Router

bootstrap/autoload.php

bootstrap/start.php

|

bootstrap/app.php

1

Dispatch request

1

{

Service Providers
Boot

Http/Kernel.php

1

Service
Providers/Register

assets/f0b72665-77d0-45ee-9d4d-fd401b59ddf2.png
Full Stack Web
Development
with Angular 6
and Laravel 5

Become fluent in both frontend and backend web development
with Docker, Angular and Laravel

assets/3d363633-a23b-4ed5-a8cf-d49b15f3eea7.png
MysQl
[o QTR

Version S7x

123456

laravel-angular-book

laravel-angular-book

123456

assets/002f2cd2-0736-445b-a096-510ba7b07fba.png
9 app

M artisan

[bootstrap
composer,son
composer.lock

[config

[database
docker-compose.ym!

[4) guiptilejs
package.json

[phpdocker
‘phpunitxmi

[public
readme.md

[resources

|4 server.php

[storage

[tests

9 vendor

assets/d7931a7a-4c40-47eb-9e03-b8d66cb23a7e.png
hands-on-full-stack-web-development-with-angular-6-and-laravel-5-memcached ... done
hands-on-full-stack-web-development-with-angular-6-and-laravel-5-webserver . done
hands-on-full-stack-web-development-with-angular-6-and-laravel-5-mysql . done
hands-on-full-stack-web-development-with-angular-6-and-laravel-5-php-fpm . done

assets/fb473991-e074-4362-9351-e9939c5f608e.png
Packh

