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Web Development has come a long way since its inception. Today we want web applications that are fast, robust, and engaging, and Progressive Web Applications (PWA) is the way to go ahead. In this book we are going to build powerful web applications using two of the most popular frameworks at our disposal, Angular and Laravel.

Angular is one of the most popular frontend JavaScript frameworks for creating modern and fast PWA. In addition to being very versatile and complete, Angular also includes the Angular CLI tool for generating modules, components, services, and many more utilities. On the other hand we have Laravel framework, a powerful tool for the development of web applications which explores the use of the paradigm convention over configuration.

This book gives you a practical knowledge of building modern full-stack web apps from scratch using Angular with a Laravel RESTful backend. It takes you through the most important technical facets of developing with these two frameworks and demonstrates how to put those skills into practice.  
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This book is for developers who are new to Angular and Laravel. Knowledge of HTML, CSS, and scripting languages such as JavaScript and PHP is required.

The book's content covers all of the phases of the software engineering life cycle by looking at modern tools and techniques, including – but not limited to – RESTful APIs, token-based authentication, database configurations, and Docker containers and images.



            

            
        
    
        

                            
                    What this book covers

                
            
            
                
Chapter 1, Understanding the Core Concepts of Laravel 5, introduces the Laravel framework as a powerful tool for the development of web applications and explores the use of the paradigm convention over configuration. We will see how, out of the box, Laravel has all of the features that we need to build modern web applications, token-based authentication, routes, resources, and more. Also, we will find out why the Laravel framework is one of the most popular PHP frameworks for developing web applications today. We will learn how to set up the environment, look at the Laravel application lifecycle, and see how to use the Artisan CLI.

Chapter 2, The Benefits of TypeScript, looks at how TypeScript enables you to write consistent JavaScript code. We examine the features that it includes, such as static typing and other features that are very common in object-oriented languages. Also, we look at using the new features of the latest version of ECMAScript, and find out TypeScript helps us to write clean and well-organized code. In this chapter, we will see the benefits of TypeScript over traditional JavaScript, discover how to use static typing, and understand how to use Interfaces, Classes, and Generics, as well as Import and Export classes.

Chapter 3, Understanding the Core Concepts of Angular 6, dives into Angular, which is one of the most popular frameworks for the development of frontend web applications. In addition to being very versatile and complete, Angular also includes the Angular CLI tool for generating modules, components, services, and many more utilities. In this chapter, we will learn how to use the new version of the Angular CLI, understand the core concepts of Angular, and get to grips with the component lifecycle.

Chapter 4, Building the Baseline Backend Application, is where we will start building the sample application. In this chapter, we are going to create a Laravel application using the RESTful architecture. We will take a closer look at some points that we mentioned briefly in the first chapter, such as the use of Docker containers to configure our environment and also how to keep our database populated. we will even check out how to use the MySQL Docker container, how to use migrations and database seed, and also how to create consistent documentation with Swagger UI.

Chapter 5, Creating a RESTful API Using Laravel - Part 1, will introduce RESTful APIs. You will learn how to build a RESTful API using the core elements of the Laravel framework—controllers, routes, and eloquent Object Relational Mapping (ORM). We also show some basic wireframes for the application we are building. In addition, we will look more closely at some relationships that you will need to be familiar with, such as one-to-one, one-to-many, and many-to-many.

Chapter 6, Creating a RESTful API Using Laravel - Part 2, continues our project of building a sample API, though, at that point, we will still have a long way to go in Laravel. We will learn how to use some features that are very common among web applications, such as token-based authentication, request validation, and custom error messages; we will also see how to use Laravel resources. Also, we will see how to use the Swagger documentation to test our API.





Chapter 7, Progressive Web Applications with Angular CLI, covers the changes that have affected angular-cli.json since the previous Angular version. The angular-cli.json file has now improved its support for multiple applications. We will see how to use the ng add a command to create a PWA and how we can organize our project structure to leave a single basis for a scalable project. Also, we will see how to use the Angular CLI to create service-work and manifest files.

Chapter 8, Dealing with Angular Router and Components, is where we come to one of the most important parts of Single-Page Applications (SPAs), which is the use of routes. Luckily, the Angular framework provides a powerful tool for dealing with application routing: the @angular/router dependency. In this chapter, we will learn how to use some of these features, such as router outlets and child-views, and we will see how to create master-detail pages. Also, we will start to create the frontend views.

Chapter 9, Creating Services and User Authentication, is one where we will create many new things, and we will be performing some refactoring to memorize import details. This is a great way to learn new things in a regular and progressive way. Also, we will dig deeper into the operation and use of the HTTP module of the Angular framework, now known as httpClient. In addition, we will look at interceptors, handling errors, using authorization headers, and how to protect application routes using route guards.

Chapter 10, Frontend Views with Bootstrap 4 and NgBootstrap, explains how to include the Bootstrap CSS framework and NgBootstrap components inside a running Angular application using the new ng add command from Angular CLI. Also, we will see how to connect our Angular services with components and how to use the backend API to put it all together. We will learn to configure CORS on our backend API, and how to use it with our Angular client-side application. We will also learn to deal with the Angular pipe, template-driven forms, model-driven forms, and form validations.

Chapter 11, Building and Deploying Angular Tests, covers how to install, customize, and extend the Bootstrap CSS framework, as well as how to use NgBootstrap components and how to connect Angular services with components and UI interfaces. We will learn to write Angular unit tests, configure application linters (for SCSS and Tslint) to maintain code consistency, create NPM scripts, and also create a Docker image and deploy the application.



            

            
        
    
        

                            
                    To get the most out of this book

                
            
            
                
Some knowledge of the command line, Docker, and MySQL would be very helpful; however, it is not fully required, as all commands and examples are accompanied by brief instructions.

You need to have the following tools installed on your machine:


	Node.js and NPM

	Docker

	A code editor—we recommend that you use Visual Studio Code

	Git source control is recommend but not required





            

            
        
    
        

                            
                    Download the example code files

                
            
            
                
You can download the example code files for this book from your account at www.packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:


	Log in or register at www.packtpub.com.

	Select the SUPPORT tab.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box and follow the onscreen instructions.



Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:


	WinRAR/7-Zip for Windows

	Zipeg/iZip/UnRarX for Mac

	7-Zip/PeaZip for Linux



The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Hands-On-Full-Stack-Web-Development-with-Angular-6-and-Laravel-5. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!



            

            
        
    
        

                            
                    Download the color images

                
            
            
                
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here https://www.packtpub.com/sites/default/files/downloads/HandsOnFullStackWebDevelopmentwithAngular6andLaravel5_ColorImages.pdf.
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There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here 

is an example: "All PHP projects that use Composer have a file called composer.json at the root project."

A block of code is set as follows:

{
 "require": {
     "laravel/framework": "5.*.*",
 }
}

Any command-line input or output is written as follows:

composer create-project --prefer-dist laravel/laravel chapter-01

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "

"Search for the chapter-01 folder, and click Open."

Warnings or important notes appear like this.

Tips and tricks appear like this.
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Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.
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Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.
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As the title of this chapter suggests, we will be providing a general overview of the Laravel framework, covering the main concepts related to the development of web applications using a web services architecture. More precisely, we will use a RESTful architecture in this book.

We assume that you already have a basic understanding of the RESTful architecture and how web services (here, we call them Application Programming Interface (API) endpoints) work.

However, if you are new in this concept, don't worry. We will help you get started.

The Laravel framework will be a helpful tool because with it, all of the data inside our controllers will be converted to the JSON format, by default.

The Laravel framework is a powerful tool for the development of web applications, using the paradigm convention over configuration. Out of the box, Laravel has all of the features that we need to build modern web applications, using the Model View Controller (MVC). Also, the Laravel framework is one of the most popular PHP frameworks for developing web applications today.

From now until the end of this book, we will refer to the Laravel framework simply as Laravel.

The Laravel ecosystem is absolutely incredible. Tools such as Homestead, Valet, Lumen, and Spark further enrich the experience of web software development using PHP.

There are many ways to start developing web applications using Laravel, meaning that there are many ways to configure your local environment or your production server. This chapter does not favor any specific way; we understand that each developer has his or her own preferences, acquired over time.

Regardless of your preferences for tools, servers, virtual machines, databases, and so on, we will focus on the main concepts, and we will not assume that a certain way is right or wrong. This first chapter is just to illustrate the main concepts and the actions that need to be performed.

Keep in mind that regardless of the methods you choose (using Homestead, WAMP, MAMP, or Docker), Laravel has some dependencies (or server requirements) that are extremely necessary for the development of web applications.

You can find more useful information in the official Laravel documentation at https://laravel.com/docs/5.6.

In this chapter, we will cover the following points:


	Setting up the environment

	The basic architecture of a Laravel application

	The Laravel application life cycle

	Artisan CLI

	MVC and routes

	Connecting with the database
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Remember, no matter how you have configured your environment to develop web applications with PHP and Laravel, keep the main server requirements in mind, and you will be able to follow the examples in this chapter.

It is important to note that some operating systems do not have PHP installed. As this is the case with Windows machines, here are some alternatives for you to create your development environment:


	HOMESTEAD (recommended by Laravel documentation): https://laravel.com/docs/5.6/homestead

	MAMP: https://www.mamp.info/en/

	XAMPP: https://www.apachefriends.org/index.html

	WAMP SERVER (only for Windows OS): http://www.wampserver.com/en/

	PHPDOCKER: https://www.docker.com/what-docker 
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Laravel uses Composer, a dependency manager for PHP, very similar to Node Package Manager (NPM) for Node.js projects, PIP for Python, and Bundler for Ruby. Let's see what the official documentation says about it: 

"A Composer is a tool for dependency management in PHP. It allows you to declare the libraries your project depends on and it will manage (install/update) them for you."

So, let's install Composer, as follows:

Go to https://getcomposer.org/download/ and follow the instructions for your platform.

You can get more information at https://getcomposer.org/doc/00-intro.md.

Note that you can install Composer on your machine locally or globally; don't worry about it right now. Choose what is easiest for you.

All PHP projects that use Composer have a file called composer.json at the root project, which looks similar to the following:

{
 "require": {
     "laravel/framework": "5.*.*",
 }
}

This is also very similar to the package.json file on Node.js and Angular applications, as we will see later in this book.

Here's a helpful link about the basic commands: https://getcomposer.org/doc/01-basic-usage.md
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We will use Docker in this chapter. Even though the official documentation of Laravel suggests the use of Homestead with virtual machines and Vagrant, we chose to use Docker because it's fast and easy to start, and our main focus is on Laravel's core concepts.

You can find more information about Docker at https://www.docker.com/what-docker.

As the Docker documentation states:

Docker is the company driving the container movement and the only container platform provider to address every application across the hybrid cloud. Today’s businesses are under pressure to digitally transform, but are constrained by existing applications and infrastructure while rationalizing an increasingly diverse portfolio of clouds, datacenters, and application architectures. Docker enables true independence between applications and infrastructure and developers and IT ops to unlock their potential and creates a model for better collaboration and innovation.

Let's install Docker, as follows:


	Go to https://docs.docker.com/install/.

	Choose your platform and follow the installation steps.

	If you have any trouble, check the getting started link at https://docs.docker.com/get-started/.



As we are using Docker containers and images to start our application and won't get into how Docker works behind the scenes, here is a short list of some Docker commands:




	Command:
	Description:



	docker ps
	Show running containers



	docker ps -a
	Show all containers



	docker start
	Start a container



	docker stop
	Stop a container



	docker-compose up -d
	Start containers in background



	docker-compose stop
	Stop all containers on docker-compose.yml file



	docker-compose start
	Start all containers on docker-compose.yml file



	docker-compose kill
	Kill all containers on docker-compose.yml file



	docker-compose logs
	Log all containers on docker-compose.yml file





 

You can check the whole list of Docker commands at https://docs.docker.com/engine/reference/commandline/docker/. And Docker-compose commands at https://docs.docker.com/compose/reference/overview/#command-options-overview-and-help.
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PHPDocker.io is a simple tool that helps us to build PHP applications using the Docker/Container concept with Compose. It's very easy to understand and use; so, let's look at what we need to do:


	Go to https://phpdocker.io/.

	Click on the Generator link.

	Fill out the information, as in the following screenshot.

	Click on the Generate project archive button and save the folder:





PHPDocker interface

The database configuration is as per the following screenshot:



Database configuration

Note that we are using the latest version of the MYSQL database in the preceding configuration, but you can choose whatever version you prefer. In the following examples, the database version will not matter.
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Now that we have filled in the previous information and downloaded the file for our machine, let's begin setting up our application so as to delve deeper into the directory structure of a Laravel application.

Execute the following steps:


	Open bash/Terminal/cmd.

	Go to Users/yourname on Mac and Linux, or C:/ on Windows.




	Open your Terminal inside the folder and type the following command:



composer create-project --prefer-dist laravel/laravel chapter-01

At the end of your Terminal window, you will see the following result:

Writing lock file
Generating autoload files
> Illuminate\Foundation\ComposerScripts::postUpdate
> php artisan optimize
Generating optimized class loader
php artisan key:generate


	In the Terminal window, type:



cd chapter-01 && ls

The results will be as follows:



Terminal window output

Congratulations! You have your first Laravel application, built with the Composer package manager. 

Now, it's time to join our application with the file downloaded from PHPDocker (our PHP/MySQL Docker screenshot). To do so, follow the next steps.


	Grab the downloaded archive, hands-on-full-stack-web-development-with-angular-6-and-laravel-5.zip, and unzip it.

	Copy all of the folder content (a phpdocker folder and a file, docker-compose.yml).

	Open the chapter-01 folder and paste the content.



Now, inside the chapter-01 folder, we will see the following files:



chapter-01 folder structure

Let's check to make sure that everything will go well with our configuration.


	Open your Terminal window and type the following command:



docker-compose up -d

It's important to remember that at this point, you need to have Docker up and running on your machine. If you are completely new to how to run Docker on your machine, you can find more information at https://github.com/docker/labs/tree/master/beginner/.


	Note that this command may take more time to create and build all of the containers. The results will be as follows:





Docker containers up and running

The preceding screenshot indicates that we have started all containers successfully: memcached, webserver (Nginx), mysql, and php-fpm.

Open your browser and type http://localhost:8081; you should see the welcome page for Laravel.

At this point, it is time to open our sample project in a text editor and check all of the Laravel folders and files. You can choose the editor that you are used to, or, if you prefer, you can use the editor that we will describe in the next section.
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For this chapter, and throughout the book, we will be using Visual Studio Code (VS Code), a free and highly configurable multiplatform text editor. It is also very useful for working with projects in Angular and TypeScript.

Install VS Code as follows:


	Go to the download page and choose your platform at https://code.visualstudio.com/Download.

	Follow the installation steps for your platform.



VS Code has a vibrant community with tons of extensions. You can research and find extensions at https://marketplace.visualstudio.com/VSCode. In the next chapters, we will install and use some of them.

For now, just install VS Code icons from https://marketplace.visualstudio.com/items?itemName=robertohuertasm.vscode-icons.
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As mentioned previously, Laravel is an MVC framework for the development of modern web applications. It is a software architecture standard that separates the representation of information from users' interaction with it. The architectural standard that it has adopted is not so new; it has been around since the mid-1970s. It remains current, and a number of frameworks still use it today.

You can read more about the MVC pattern at https://en.wikipedia.org/wiki/Model-view-controller.
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Now, let's look at how this pattern is implemented within an application with Laravel:


	Open the VS Code editor.

	If this is the first time you are opening VS Code, click on the top menu and navigate to File | Open.

	Search for the chapter-01 folder, and click Open.

	Expand the app folder at the left-hand side of VS Code.



The application files are as follows:



Laravel root folder

The phpdocker folder and docker-compose.yml files are not part of the Laravel framework; we added these files manually, earlier in this chapter.
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In a very basic MVC workflow, when a user interacts with our application, the steps in the following screenshot are performed. Imagine a simple web application about books, with a search input field. When the user types a book name and presses Enter, the following flow cycle will occur:



MVC flow

The MVC is represented by the following folders and files:




	MVC Architecture
	Application Path
	
	File



	Model
	app/
	
	User.php



	View
	resources/views
	
	welcome.blade.php



	Controller
	app/Http/Controllers
	
	Auth/AuthController.php

Auth/PasswordController.php





 

Note that the application models are at the root of the app folder, and the application already has at least one file for MVC implementation.

Also note that the app folder contains all of the core files for our application. The other folders have very intuitive names, such as the following:




	Bootstrap
	Cache, autoload, and bootstrap applications



	Config
	Application's configuration



	Database
	Factory, migrations, and seeds



	Public
	JavaScript, CSS, fonts, and images



	Resource
	Views, SASS/LESS, and localization



	Storage
	This folder has separated apps, frameworks, and logs



	Tests
	Unit tests using PHPunit



	Vendor
	
Composer dependencies







 

Now, let's see how things work in the Laravel structure.
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In a Laravel application, the flow is almost the same as in the previous example, but a little more complex. When the user triggers an event in a browser, the request arrives on a web server (Apache/Nginx), where we have our web application running. So, the server redirects the request into public/index.php, the starting point for the entire framework. In the bootstrap folder, the autoloader.php is started and loads all of the files generated by the composer retrieving an instance to the Laravel application.

Let's look at the following screenshot:





Laravel application cycle

The diagram is complex enough for our first chapter, so we will not get into all of the steps performed by the user's request. Instead, we will go on to another very important feature that is a main concept in Laravel: the Artisan command-line interface (CLI).

You can read more about the request life cycle in Laravel in the official documentation at https://laravel.com/docs/5.2/lifecycle.
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Nowadays, it is common practice to create web applications by using the command line; and, with the evolution of web development tools and technologies, this has become very popular.

We will mention that NPM is one of the most popular. However, for the development of applications using Laravel, we have an advantage. The Artisan CLI is automatically installed when we create a Laravel project.

Let's look at what the official documentation of Laravel says about the Artisan CLI:

Artisan is the name of the command-line interface included with Laravel. It provides a number of helpful commands for your use while developing your application.

Inside of the chapter-01 folder, we find the Artisan bash file. It's responsible for running all of the commands available on the CLI, and there are many of them, to create classes, controllers, seeds, and much more.
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