
    
      [image: (missing alt)]

  
    
      Table of Contents

      
        Meteor: Full-Stack Web Application Development
      

      
        Meteor: Full-Stack Web Application Development
      

      
        Credits
      

      
        Preface
      

      
        What this learning path covers
      

      
        What you need for this learning path
      

      
        Who this learning path is for
      

      
        Reader feedback
      

      
        Customer support
      

      
        Downloading the example code
      

      
        Errata
      

      
        Piracy
      

      
        Questions
      

      
        I. Module 1
      

      
        1. Getting Started with Meteor
      

      
        The full-stack framework of Meteor
      

      
        Meteor's requirements
      

      
        Using Chrome's developer tools
      

      
        Using Git and GitHub
      

      
        Installing Meteor
      

      
        Installing Git
      

      
        Creating our first app
      

      
        Creating a good folder structure
      

      
        Preadd style files
      

      
        Adding basic packages
      

      
        Adding a core package
      

      
        Adding a third-party package
      

      
        Variable scopes
      

      
        Meteor's folder conventions and loading order
      

      
        Loading assets on the server
      

      
        Meteor's command-line tool
      

      
        Updating Meteor
      

      
        Deploying Meteor
      

      
        Summary
      

      
        2. Building HTML Templates
      

      
        Writing templates in Meteor
      

      
        Building the basic templates
      

      
        Adding templates and partials
      

      
        Displaying data with template helpers
      

      
        Setting the data context for a template
      

      
        Using the {{#with}} block helper
      

      
        "this" in template helpers and template callbacks
      

      
        Adding events
      

      
        Block helpers
      

      
        Listing posts
      

      
        Spacebars syntax
      

      
        Accessing parent data contexts
      

      
        Passing data to helpers
      

      
        Summary
      

      
        3. Storing Data and Handling Collections
      

      
        Meteor and databases
      

      
        Setting up a collection
      

      
        Adding post examples
      

      
        Querying a collection
      

      
        Updating a collection
      

      
        Database everywhere
      

      
        Differences between client and server collections
      

      
        Summary
      

      
        4. Controlling the Data Flow
      

      
        Syncing data – the current Web versus the new Web
      

      
        Removing the autopublish package
      

      
        Publishing data
      

      
        Publishing only parts of data
      

      
        Publishing specific fields
      

      
        Lazy loading posts
      

      
        Switching subscriptions
      

      
        Some notes on data publishing
      

      
        Summary
      

      
        5. Making Our App Versatile with Routing
      

      
        Adding the iron:router package
      

      
        Setting up the router
      

      
        Switching to a layout template
      

      
        Adding another route
      

      
        Moving the posts subscription to the Home route
      

      
        Setting up the post route
      

      
        Creating a single-post publication
      

      
        Adding the post route
      

      
        Linking the posts
      

      
        Changing the website's title
      

      
        Summary
      

      
        6. Keeping States with Sessions
      

      
        Meteor's session object
      

      
        A better way for simple reactivity
      

      
        Using sessions in template helpers
      

      
        Session and hot code pushes
      

      
        Rerunning functions reactively
      

      
        Stopping reactive functions
      

      
        Using autorun in a template
      

      
        The reactive session object
      

      
        Summary
      

      
        7. Users and Permissions
      

      
        Meteor's accounts packages
      

      
        Adding the accounts packages
      

      
        Adding admin functionality to our templates
      

      
        Adding a link for new posts
      

      
        Adding the link to edit posts
      

      
        Adding the login form
      

      
        Creating the template to edit posts
      

      
        Creating the admin user
      

      
        Adding permissions
      

      
        A note on security
      

      
        Creating routes for the admin
      

      
        Preventing visitors from seeing the admin routes
      

      
        Summary
      

      
        8. Security with the Allow and Deny Rules
      

      
        Adding a function to generate slugs
      

      
        Creating a new post
      

      
        Saving a post
      

      
        Editing posts
      

      
        Updating the current post
      

      
        Restricting database updates
      

      
        Removing the insecure package
      

      
        Adding our first allow rules
      

      
        Adding a deny rule
      

      
        Adding posts using a method call
      

      
        Method stubs and latency compensation
      

      
        Changing the button
      

      
        Adding the method
      

      
        Calling the method
      

      
        Summary
      

      
        9. Advanced Reactivity
      

      
        Reactive programming
      

      
        The invalidating cycle
      

      
        Building a simple reactive object
      

      
        Rerunning functions
      

      
        Creating an advanced timer object
      

      
        Reactive computations
      

      
        Stopping reactive functions
      

      
        Preventing run at start
      

      
        Advanced reactive objects
      

      
        Summary
      

      
        10. Deploying Our App
      

      
        Deploying on meteor.com
      

      
        Deploying on meteor.com using a domain name
      

      
        Backup and restore databases hosted on meteor.com
      

      
        Deploying on other servers
      

      
        Bundling our app
      

      
        Deploying using Demeteorizer
      

      
        Deploying using Meteor Up
      

      
        Setting up the server
      

      
        Deploying with mup
      

      
        Outlook
      

      
        Summary
      

      
        11. Building Our Own Package
      

      
        The structure of a package
      

      
        Creating our own package
      

      
        Adding the package metadata
      

      
        Adding the package
      

      
        Releasing our package to the public
      

      
        Publishing our package online
      

      
        Updating our package
      

      
        Summary
      

      
        12. Testing in Meteor
      

      
        Types of tests
      

      
        Testing packages
      

      
        Adding package tests
      

      
        Running the package tests
      

      
        Testing our meteor app
      

      
        Testing using Jasmine
      

      
        Adding unit tests to the server
      

      
        Adding integration tests to the client
      

      
        Adding a test for the visitors
      

      
        Adding a test for the admin
      

      
        Acceptance tests
      

      
        Nightwatch
      

      
        Laika
      

      
        Summary
      

      
        A. Appendix
      

      
        List of Meteor's command-line tool commands
      

      
        The iron:router hooks
      

      
        II. Module 2
      

      
        1. Optimizing Your Workflow
      

      
        Introduction
      

      
        Installing Meteor
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        There's more...
      

      
        Finding documentation for Meteor
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        Getting help with questions
      

      
        How to do it…
      

      
        How it works…
      

      
        Stack Overflow
      

      
        Meteor forums
      

      
        The #meteor on IRC
      

      
        There's more…
      

      
        Setting up your project file structure
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        client/server
      

      
        main/lib
      

      
        public/private
      

      
        both
      

      
        There's more…
      

      
        See also
      

      
        Setting up your development environment
      

      
        Getting ready?
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Using the web console
      

      
        Getting ready
      

      
        Safari
      

      
        Firefox
      

      
        Chrome
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        Deploying a test app to Meteor
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Deploying to Meteor using a CNAME redirect
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        See also
      

      
        Deploying to a custom hosted environment
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Deploying with Meteor Up (MUP)
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        See also
      

      
        Using CoffeeScript
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        See also
      

      
        Using CSS compilers
      

      
        Getting ready
      

      
        How to do it…
      

      
        Using Stylus
      

      
        Using Less
      

      
        Using SCSS / SASS
      

      
        How it works…
      

      
        See also
      

      
        2. Customizing with Packages
      

      
        Introduction
      

      
        Adding Meteor packages
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        There's more…
      

      
        See also
      

      
        Removing Meteor packages
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        Discovering new packages with Atmosphere
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Creating a multipage application with Iron Router
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Building a custom package
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Using npm modules
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Publishing custom packages to Atmosphere
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        3. Building Great User Interfaces
      

      
        Introduction
      

      
        Inserting templates with Spacebars
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        There's more…
      

      
        Inserting raw HTML using triple braces
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        See also
      

      
        Creating dynamic lists
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Building a smooth interface with Bootstrap
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Creating customized global helpers
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Creating custom components
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Using reactivity with HTML attributes
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        See also
      

      
        Using dynamic templates
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Animating DOM elements
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        4. Creating Models
      

      
        Introduction
      

      
        Implementing a simple collection
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        See also
      

      
        Using the Session object
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Sorting with MongoDB queries
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Filtering with MongoDB queries
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Creating upsert MongoDB queries
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Implementing a partial collection
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        5. Implementing DDP
      

      
        Introduction
      

      
        Reading the DDP stream
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        There's more…
      

      
        See also
      

      
        Using client-only collections
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        See also
      

      
        Implementing multiserver DDP
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Integrating DDP with other technologies
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        6. Mastering Reactivity
      

      
        Introduction
      

      
        Creating and consuming a reactive value
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        There's more…
      

      
        See also
      

      
        Using Ajax query results in ReactiveVar
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        See also
      

      
        Making a custom library reactive
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        See also
      

      
        Updating Blaze templates without Mongo
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        See also
      

      
        Using inline data to modify UI elements reactively
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        There's more…
      

      
        See also
      

      
        Integrating a jQuery UI
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        There's more…
      

      
        See also
      

      
        7. Using Client Methods
      

      
        Introduction
      

      
        Creating dynamic graphs with SVG and Ajax
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        See also
      

      
        Using the HTML FileReader to upload images
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Creating a coloring book with the Canvas element
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        8. Integrating Third-party Libraries
      

      
        Introduction
      

      
        Using npm packages directly
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        There's more...
      

      
        See also
      

      
        Building graphs with D3.js
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Creating cutting-edge UIs with Polymer
      

      
        Getting ready
      

      
        Creating your app and folders
      

      
        Creating your files
      

      
        Configuring Bower and installing Polymer
      

      
        Adding helper Meteor packages
      

      
        Configuring Meteor
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        9. Securing Your Application
      

      
        Introduction
      

      
        Basic safety – turning off autopublish
      

      
        Getting ready
      

      
        Project setup
      

      
        Creating a basic template
      

      
        Adding CSS styling
      

      
        How to do it...
      

      
        How it works...
      

      
        See also
      

      
        Basic safety – removing insecure
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        See also
      

      
        Securing data transactions with allow and deny
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        There's more…
      

      
        See also
      

      
        Hiding data with façades
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        See also
      

      
        Protecting the client with browser-policy
      

      
        Getting ready
      

      
        Scaffolding setup
      

      
        Add CDN-hosted bootstrap
      

      
        Add inline and eval() scripts
      

      
        How to do it...
      

      
        How it works...
      

      
        See also
      

      
        10. Working with Accounts
      

      
        Introduction
      

      
        Implementing OAuth accounts packages
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        There's more…
      

      
        See also
      

      
        Customizing the accounts login
      

      
        Getting ready
      

      
        How to do it...
      

      
        How it works...
      

      
        There's more…
      

      
        See also
      

      
        Performing two-factor authentication
      

      
        Getting ready
      

      
        Creating our baseline application
      

      
        Signing up for the Twilio SMS service
      

      
        Creating an SMS service on Twilio
      

      
        Installing the twilio-node npm package
      

      
        Creating and testing the sendTwilio() method
      

      
        How to do it...
      

      
        How it works...
      

      
        There's more…
      

      
        See also
      

      
        11. Leveraging Advanced Features
      

      
        Introduction
      

      
        Building custom server methods
      

      
        Getting ready
      

      
        Project setup
      

      
        Creating a simple app
      

      
        How to do it...
      

      
        How it works...
      

      
        There's more…
      

      
        See also
      

      
        Creating custom EJSON objects
      

      
        Getting ready
      

      
        Declaring the Swatch object
      

      
        Modifying Swatches.insert()
      

      
        Changing Swatch colors
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Handling asynchronous events
      

      
        Getting ready
      

      
        Creating a baseline Meteor app
      

      
        Obtaining your Twitter Access Tokens
      

      
        Initializing twit
      

      
        Creating the Tweets collection, and building a stream reader
      

      
        Tracking and testing changes
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Using asynchronous functions
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        12. Creating Useful Projects
      

      
        Introduction
      

      
        Creating RESTful web services
      

      
        Getting ready
      

      
        Creating the baseline application
      

      
        Installing and configuring Postman
      

      
        How to do it...
      

      
        How it works...
      

      
        There's more…
      

      
        See also
      

      
        Creating a complete app with Iron Router
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Deploying apps to mobile devices
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        Adding social sharing
      

      
        Getting ready
      

      
        How to do it…
      

      
        How it works…
      

      
        There's more…
      

      
        See also
      

      
        III. Module 3
      

      
        1. Getting Started with Meteor
      

      
        CoffeeScript for Meteor
      

      
        Objects and arrays
      

      
        Logical statements and operators
      

      
        Functions
      

      
        Binding
      

      
        Jade for Meteor
      

      
        HTML tags
      

      
        Templates and components
      

      
        Helpers
      

      
        Stylus for Meteor
      

      
        CSS tags
      

      
        Variables
      

      
        Functions/mixins
      

      
        Templates, helpers, and events
      

      
        Templates
      

      
        Creating helpers
      

      
        Events
      

      
        The event loop and the merge box
      

      
        The event loop
      

      
        The merge box
      

      
        The beginning of our online shop
      

      
        The must-have packages
      

      
        File structure
      

      
        Summary
      

      
        2. Publish and Subscribe Patterns
      

      
        Template-level subscriptions
      

      
        Setting up products for the online shop
      

      
        Building the publisher
      

      
        Subscribing to the publisher
      

      
        Database relationships
      

      
        One to one
      

      
        One to many
      

      
        Many to many
      

      
        Publishing with relations
      

      
        Publishing products with images (one to one)
      

      
        Publishing orders with details (one to many)
      

      
        Publishing a tag with products (many to many)
      

      
        Key, foreign key, options, and filter
      

      
        Aggregation publishers
      

      
        The aggregation framework
      

      
        Publishing the results
      

      
        External API publishers
      

      
        The HTTP package
      

      
        Summary
      

      
        3. Front-end Patterns
      

      
        Responsive design
      

      
        General settings
      

      
        Bootstrap
      

      
        Jeet grid systems with Rupture
      

      
        Super helpers
      

      
        Defining a Blaze helper
      

      
        Making a global dictionary
      

      
        Variable types
      

      
        Session variables
      

      
        Persistent variables
      

      
        File scope variables
      

      
        The ReactiveVar variables
      

      
        Forms
      

      
        Meteor Methods
      

      
        Autoform
      

      
        Loading data
      

      
        Designing the loading indicator
      

      
        Implementing the loading indicator
      

      
        Animations and transitions
      

      
        Animating with CSS
      

      
        Executing animations in Meteor
      

      
        SEO
      

      
        Prerender.io
      

      
        Using Meta
      

      
        Schema.org
      

      
        Summary
      

      
        4. Application Patterns
      

      
        Filtering and paging collections
      

      
        Router gotchas
      

      
        Stateful pagination
      

      
        Filtering
      

      
        Security
      

      
        Roles
      

      
        Collection2
      

      
        Deny rules
      

      
        Custom deny rules
      

      
        The Meteor methods – round 2
      

      
        Managing the wait time
      

      
        Browser policy
      

      
        Framing
      

      
        Content
      

      
        External APIs
      

      
        Synchronization
      

      
        Webhooks
      

      
        Summary
      

      
        5. Testing Patterns
      

      
        Behavior tests
      

      
        Unit tests
      

      
        Summary
      

      
        6. Deployment
      

      
        Setting up Modulus
      

      
        Setting up Compose
      

      
        Setting up Kadira
      

      
        Setting up an SSL certificate
      

      
        Summary
      

      
        B. Bibliography
      

      
        Index
      

    

  Meteor: Full-Stack Web Application Development





Meteor: Full-Stack Web Application Development



Learn how to create mobile and full-stack web applications in JavaScript by getting a deeper insight into Meteor


A course in three modules


[image: Meteor: Full-Stack Web Application Development]
BIRMINGHAM - MUMBAI



Meteor: Full-Stack Web Application Development



Copyright © 2016 Packt Publishing
All rights reserved. No part of this course may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this course to ensure the accuracy of the information presented. However, the information contained in this course is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this course.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this course by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
Published on: November 2016
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78728-775-4 

www.packtpub.com


Credits




Authors

Fabian Vogelsteller
Isaac Strack
Marcelo Reyna

Reviewers

Riccardo Mancinelli
Rohit Mukherjee
Isaac Strack
Jebin B V
Ryan Wilcox
Brad Cypert
David Ryan Speer

Content Development Editor

Onkar Wani

Graphics

Abhinash Sahu

Production Coordinator
Shraddha Falebhai

Preface



Meteor is the weapon of choice for start-ups in today’s world as it’s an incredibly powerful and fun platform that allows you to build real-time web applications quickly and easily and in pure JavaScript. It provides developers with tools and flexibility to build a fully-fledged production app. 
Meteor aims to create single-page applications where real time is the default. It takes care of the data synchronization and updating of the DOM. If data changes, your screen will be updated. These two basic concepts make up a lot of the work we do as web developers, and with Meteor this happens without any extra line of code. 
  It is modular and declarative, supports data-on-the-wire, is well supported by a thriving development community, and implements full-stack reactivity to create a great impact on your day-to-day development efforts.
As Meteor is modular and well supported, it works easily with all of your favorite JavaScript frameworks. You can use the entire Meteor stack, or you can mix and match it with community packages to complement your existing infrastructure / skill set. 
What this learning path covers




Module 1, Building Single-page Web Apps with Meteor, This module takes you from the installation of Meteor to building a fully working web blog. You will start with the basic concepts and folder structure of a Meteor project, learning how Meteor templates work. Learn how to retrieve and send data to the server and manipulate the database content. Routing will later make your example app look and behave like a real website. Also, you’ll get to grips with Meteor’s reactivity concept that can rerun functions when data changes while you’re building your own reactive object, and package it later for drop-in use. After your app is ready, you will learn about ways of deploying your app on different types of servers. Finally, we will take a look at testing packages and the applications. 

Module 2, Meteor Cookbook, This module starts with simple recipes designed for quick reference, and culminating in advanced recipes that walk you through building and deploying a complete application, it covers all the major areas of Meteor development, including lesser-known and undocumented features. You will have instant access to step-by-step recipes, accompanied by clear, concise explanations on optimizing your workflow. 

Module 3, Meteor Design Patterns, Module starts off with a refresher on the basics of JavaScript programming such as templates, CoffeeScript, the Event Loop, and the Merge Box, amongst others. You then learn how to map real-world data and optimize the data’s publishers to output data with the least amount of work done by the server with some subscribe and publish patterns. Following this, you will see how to optimize and secure the web application and maintain applications without breaking other features. Finally, you will learn how to deploy a secure production-ready application while learning to set up modulus, compose with Oplog tracking and SSL certificates, as well as error tracking with Kadira.


What you need for this learning path



Module 1:
To follow the examples in the modules, you will need a text editor to write the code. It’s highly recommended to use Sublime Text as your IDE, as it has a wide range of plugins for almost every task a web developer could think of.
You will also need a modern browser to see your results. As many examples use the browser console to make changes to the database and to see the results of the code snippets, I recommend Google Chrome. Its Developer tools web inspector has everything a web developer needs to work and debug websites with ease.
Additionally, you can use Git and GitHub to store your success every step along the way and in order to go back to the previous versions of your code.
The code examples for each chapter will also be available on GitHub at 

https://github.com/frozeman/book-building-single-page-web-apps-with-meteor, where each commit in this repository correlates with one chapter of the module, giving you an easy way to see what was added and removed in each step along the way
Module 2: 
This module assumes that you have a working knowledge of JavaScript and HTML. Being familiar with Node, npm, GitHub and the command line/terminal will be very helpful (but not critical) to getting the most out of the recipes in this book.
You will find recipes to install Meteor on Mac OS X or Linux, with links to using Meteor on Windows and Google Chromebooks. In every instance, you will need access to the Internet to download Meteor and community packages, and you will need installation privileges for your developer machine regardless of the operating system.
For deployment to production environments or to mobile devices, the requirements will vary from recipe to recipe. To complete all of the recipes successfully, you will need your own hosted server and DNS domain as well as iOS, Android, or Windows mobile devices and SDKs.
Module 3:
 •  Meteor version 1.1.0.2 or above
 •  A Unix system such as a Mac or Linux computer

Who this learning path is for



If you are a web developer who is familiar with Meteor and has basic knowledge of web development, and you now want to explore new paradigms of single-page, real-time applications, this course is perfectly suited for you.    

Reader feedback



Feedback from our readers is always welcome. Let us know what you think about this course—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the course’s title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support



Now that you are the proud owner of a Packt course, we have a number of things to help you to get the most from your purchase.
Downloading the example code



You can download the example code files for this course from your account at http://www.packtpub.com. If you purchased this course elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:
	Log in or register to our website using your e-mail address and password.
	Hover the mouse pointer on the SUPPORT tab at the top.
	Click on Code Downloads & Errata.
	Enter the name of the course in the Search box.
	Select the course for which you’re looking to download the code files.
	Choose from the drop-down menu where you purchased this course from.
	Click on Code Download.


You can also download the code files by clicking on the Code Files button on the course’s webpage at the Packt Publishing website. This page can be accessed by entering the course’s name in the Search box. Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:
	WinRAR / 7-Zip for Windows
	Zipeg / iZip / UnRarX for Mac
	7-Zip / PeaZip for Linux


The code bundle for the course is also hosted on GitHub at https://github.com/ PacktPublishing/Meteor-Full-Stack-Web-Application-Development. We also have other code bundles from our rich catalog of books, videos, and courses available at https://github.com/PacktPublishing/. Check them out!

Errata



Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our courses—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this course. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your course, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the course in the search field. The required information will appear under the Errata section.

Piracy



Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.-

Questions



If you have a problem with any aspect of this course, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.


Part I. Module 1




Building Single-page Web Apps with Meteor
Build real-time apps at lightning speed using the most powerful full-stack JavaScript framework




Chapter 1. Getting Started with Meteor



Welcome to this book on Meteor. Meteor is an exciting new JavaScript framework, and we will soon see how easy it is to achieve real and impressive results with less code.
In this chapter, we will learn what the requirements are and what additional tools we need to get started. We will see how simple it is to get our first Meteor application running and what a good basic folder structure for a Meteor app could be. We will also learn about Meteor's automatic build process and its specific way of loading files.
We will also see how to add packages using Meteors official packaging system. At the end of the chapter, we will take a short look at Meteor's command-line tool and some of its functions.
To bring it together, we will cover the following topics:
	The full-stack framework of Meteor
	Meteor's requirements
	Installing Meteor
	Adding basic packages
	Meteor's folder conventions and loading order
	Meteor's command-line tool


The full-stack framework of Meteor



Meteor is not just a JavaScript library such as jQuery or AngularJS. It's a full-stack solution that contain frontend libraries, a Node.js-based server, and a command-line tool. All this together lets us write large-scale web applications in JavaScript, on both the server and client, using a consistent API.
Even with Meteor being quite young, already a few companies such as https://lookback.io, https://respond.ly, and https://madeye.io use Meteor in their production environment.
If you want to see for yourself what's made with Meteor, take a look at http://madewith.meteor.com.
Meteor makes it easy for us to build web applications quickly and takes care of the boring processes such as file linking, minifying, and concatenating of files.
Here are a few highlights of what is possible with Meteor:
	We can build complex web applications amazingly fast using templates that automatically update themselves when data changes
	We can push new code to all clients on the fly while they are using our app
	Meteor core packages come with a complete account solution, allowing a seamless integration of Facebook, Twitter, and more
	Data will automatically be synced across clients, keeping every client in the same state in almost real time
	Latency compensation will make our interface appear super fast while the server response happens in the background.


With Meteor, we never have to link files with the <script> tags in HTML. Meteor's command-line tool automatically collects JavaScript or CSS files in our application's folder and links them in the index.html file, which is served to clients on initial page load. This makes structuring our code in separate files as easy as creating them.
Meteor's command-line tool also watches all files inside our application's folder for changes and rebuilds them on the fly when they change.
Additionally, it starts a Meteor server that serves the app's files to the clients. When a file changes, Meteor reloads the site of every client while preserving its state. This is called a 
hot code reload.
In production, the build process also concatenates and minifies our CSS and JavaScript files.
By simply adding the less and coffee core packages, we can even write all styles in LESS and code in CoffeeScript with no extra effort.
The command-line tool is also the tool for deploying and bundling our app so that we can run it on a remote server.
Sounds awesome? Let's take a look at what's needed to use Meteor.


Meteor's requirements



Meteor is not just a JavaScript framework and server. As we saw earlier, it is also a command-line tool that has a whole build process for us in place.
Currently, the operating systems that are officially supported are as follows:
	Mac OS X 10.6 and above
	Linux x86 and x86_64 systems
	WindowsNote
The Windows installer is still in development at the time of writing this book. Please follow the wiki page at https://github.com/meteor/meteor/wiki/Preview-of-Meteor-on-Windows.





This book and all examples use Meteor 1.0.
Using Chrome's developer tools



We will also need Google Chrome or Firefox with the Firebug add-on installed to follow examples that require a console. The examples, screenshots, and explanations in this book will use Google Chrome's developer tools.

Using Git and GitHub



I highly recommend using GitHub when working with web projects, such as the one we will work on in this book. Git and GitHub help us to back up our progress and let us always go back to previous states while seeing what we've changed.
Git is a version control system, which was created in 2005 by the inventor of Linux, Linus Torvalds.
With Git, we can commit any state of our code and later go back to that exact state. It also allows multiple developers to work on the same code base and merge their results together in an automated process. If conflicts appear in this process, the merging developer is able to resolve those merge conflicts by removing the unwanted lines of code.
I also recommend registering an account at http://github.com, as this is the easiest way to browse our code history. They have an easy to use interface as well as a great Windows and Mac app.
To follow the code examples in this book, you can download all code examples for each chapter from the book's web page at https://www.packtpub.com/books/content/support/17713.
Additionally, you will be able to clone the book's code from http://github.com/frozeman/book-building-single-page-web-apps-with-meteor. Every tag in this repository equals to one chapter of the book and the commit history will help you to see the changes, which were made in each chapter.


Installing Meteor



Installing Meteor is as easy as running the following command in the terminal:

$ curl https://install.meteor.com/ | sh


That's it! This will install the Meteor command-line tool ($ meteor), the Meteor server, MongoDB database, and the Meteor core packages (libraries).
Note
All command-line examples are run and tested on Mac OS X and can differ on Linux or Windows systems.


Installing Git



To install Git, I recommend installing the GitHub app from https://mac.github.com or https://windows.github.com. We can then simply go inside the app to Preferences and click on the Install Command Line Tools button inside the Advanced tab.
If we want to install Git manually and set it up via the command line, we can download the Git installer from http://git-scm.com and follow this great guide at https://help.github.com/articles/set-up-git.
Now, we can check whether everything was installed successfully by opening the terminal and running the following command:

$ git


Tip
Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.


This should return us a list of Git options. If we get command not found: git, we need to check whether the git binary was correctly added to our PATH environment variable.
If everything is fine, we are ready to create our first Meteor app.


Creating our first app



To create our first app, we open the terminal, go to the folder where we want to create our new project, and enter the following commands:

$ cd my/developer/folder
$ meteor create my-meteor-blog


Meteor will now create a folder named my-meteor-blog. The HTML, CSS, and JavaScript files that Meteor created for us inside this folder are already a fully working Meteor app. To see it in action, run the following commands:

$ cd my-meteor-blog
$ meteor


Meteor will now start a local server for us on port 3000. Now, we can open our web browser and navigate to http://localhost:3000. We will see the app running.
This app doesn't do much, except showing a simple reactive example. If you click on the Click Me button, it will increase the counter:
[image: Creating our first app]
For later examples, we will need Google Chrome's developer tools. To open the console, we can press Alt + command + I on Mac OS X or click on the menu button on the upper-right corner of Chrome, select More tools, and then Developer tools.
The Developer tools allow us to inspect the DOM and CSS of our website, as well as having a console where we can interact with our website's JavaScript.
Creating a good folder structure



For this book, we will build our own app from scratch. This also means we have to set up a sustainable folder structure, which helps us to keep our code organized.
With Meteor, we are very flexible concerning our folder structure. This means we can put our files wherever we want, as long as they are inside the app's folder. Meteor treats specific folders differently, allowing us to expose files only on the client, the server, or both. We will take a look at those specific folders later.
But, first let's get our hands dirty by deleting all preadd files in our newly created application folder and creating the following folder structure:
- my-meteor-blog
  - server
  - client
    - styles
    - templates


Preadd style files



To fully focus on the Meteor code but still have a pretty-looking blog, I strongly recommend to download the code that accompanies this chapter from the book's web page at http://packtpub.com/books/content/support/17713. They will contain already two drop-in-place style files (lesshat.import.less and styles.less), which will let your example blog look pretty in the upcoming chapters.
You can also download these files directly from GitHub at https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter1/my-meteor-blog/client/styles and copy them to the my-meteor-blog/client/styles folder manually.
Next, we need to add some basic packages so that we can start building our app.


Adding basic packages



Packages in Meteor are libraries that can be added to our projects. The nice thing about Meteor packages is that they are self-contained units, which run out of the box. They mostly add either some templating functionality or provide extra objects in the global namespace of our project.
Packages can also add features to Meteor's build process such as the stylus package, which lets us write our app's style files with the stylus preprocessor syntax.
For our blog, we will need two packages at first:
less: This is a Meteor core package and will compile our style files on the fly to CSS
jeeeyul:moment-with-langs: This is a third-party library for date parsing and formatting
Adding a core package



To add the 
less package, we can simply open the terminal, go to our projects folder, and enter the following command:

$ meteor add less


Now, we are able to use any *.less files in our project, and Meteor will automatically compile them in its build process for us.

Adding a third-party package



To add a third-party package, we can simply search for packages on either https://atmospherejs.com, which is the frontend for Meteors packaging system, or use the command-line tool, $ meteor search <package name>.
For our blog, we will need the jeeeyul:moment-with-langs package that allows us later to simply manipulate and format dates.
Packages are namespaced with the authors name followed by a colon.
To add the moment package, we simply enter the following command:

$ meteor add jeeeyul:moment-with-langs


After the process is done, and we restarted our app using $ meteor, we will have the moment object available in our app global namespace and we can make use of it in the upcoming chapters.
Should we ever want to add only specific version of a package, we can use the following command:

$ meteor add jeeeyul:moment-with-langs@=2.8.2


If you want a version in the 1.0.0 (but not the 2.0.0) range use the following command:

$ meteor add jeeeyul:moment-with-langs@1.0.0


To update only packages we can simply run the following command:

$ meteor update –-packages-only


Additionally, we can update only a specific package using the following command:

$ meteor update jeeeyul:moment-with-langs


That's it! Now we are fully ready to start creating our first templates. You can jump right into the next chapter, but make sure you come back to read on, as we will now talk about Meteor's build process in more detail.


Variable scopes



To understand Meteor's build process and its folder conventions, we need to take a quick look at variable scopes.
Meteor wraps every code files in an anonymous function before serving it. Therefore, declaring a variable with the var keyword will make it only available in that file's scope, which means these variables can't be accessed in any other file of your app. However, when we declare a variable without this keyword, we make it a globally available variable, which means it can be accessed from any file in our app. To understand this, we can take a look at the following example:
// The following files content
var myLocalVariable = 'test';
myGlobalVariable = 'test';

After Meteor's build process, the preceding lines of code will be as follows:
(function(){
  var myLocalVariable = 'test';
  myGlobalVariable = 'test';
})();

This way, the variable created with var is a local variable of the anonymous function, while the other one can be accessed globally, as it could be created somewhere else before.

Meteor's folder conventions and loading order



Though Meteor doesn't impose restrictions concerning our folder names or structure, there are naming conventions that help Meteor's build process to determine the order in which the files need to be loaded.
The following table describes the folder and their specific loading order:
	
Folder name

	
Load behavior


	
client

	
This is loaded only on the client.


	
client/compatibility

	
This will not be wrapped in an anonymous function. This is made for libraries that declare top-level variables with var. Additionally, files in this folder will be loaded before other files on the client.


	
server

	
Files in this folder will only be served on the server.


	
public

	
This folder can contain assets used on the client, such as images, favicon.ico, or robots.txt. Folders and files inside the public folder are available on the client from root, /.


	
private

	
This folder can contain assets that will only be available on the server. These files are available through Assets API.


	
lib

	
Files and subfolders inside a lib folder will be loaded before other files, where lib folders in deeper folders will be loaded before the files in lib folders of their parent folders.


	
tests

	
Files inside this folder won't be touched or loaded by Meteor at all.


	
packages

	
When we want to use local packages, we can add them to this folder and Meteor will use those packages, even if one with the same name exists in Meteor's official package system. (However, we still have to add the packages using $ meteor add ....)




The following table describes filenames that have created a specific loading order:
	
Filename

	
Load behavior


	
main.*

	
Files with this name are loaded last, whereas files in deeper folders are loaded before the files of their parent folders


	
*.*

	
Files outside of the former mentioned folders in this table are loaded on both the client and server




So, we see that Meteor gathers all files except the ones inside public, private, and tests.
Additionally, files are always loaded in the alphabetical order, and files in subfolders are loaded before the ones in parent folders.
If we have files outside the client or server folder and want to determine where the code should be executed, we can use the following variables:
if(Meteor.isClient) {
  // Some code executed on the client
}

if(Meteor.isServer) {
  // Some code executed on the server. 
}

We also see that code inside a main.* file is loaded last. To make sure a specific code only loads when all files are loaded and the DOM on the client is ready, we can use the Meteor's startup() function:
Meteor.startup(function(){
  /*
  This code runs on the client when the DOM is ready,
  and on the server when the server process is finished starting.
  */
});

Loading assets on the server



To load files from inside the private folder on the server, we can use the Assets API as follows:
Assets.getText(assetPath, [asyncCallback]);
// or
Assets.getBinary(assetPath, [asyncCallback])

Here, assetPath is a file path relative to the private folder, for example, 'subfolder/data.txt'.
If we provide a callback function as the second parameter, the Assets() method will run asynchronously. So, we have two ways of retrieving the content of an assets file:
// Synchronously
var myData = Assets.getText('data.txt');

// Or asynchronously
Assets.getText('data.txt', function(error, result){
  // Do somthing with the result.
  // If the error parameter is not NULL, something went wrong
});

Note
If the first example returns an error, our current server code will fail. In the second example, our code will still work, as the error is contained in the error parameter.


Now that we understand Meteor's basic folder structure, let's take a brief look at the Meteor's command-line tool.


Meteor's command-line tool



Now that we know already about Meteor's build process and folder structure, we will take a closer look at what we can do with the command-line tool that Meteor provides.
As we saw when using the meteor command, we need to be inside a Meteor project so that all actions will be performed on this project. For example, when we run meteor add xxx, we add a package to the project where we are currently in.
Updating Meteor



If Meteor releases a new version, we can simply update our project by running the following command:

$ meteor update


If we want to go back to a previous version, we can do this by running the following command:

$ meteor update –-release 0.9.1


This would set our project back to release version 0.9.1.

Deploying Meteor



Deploying our Meteor app to a public server is as easy as running the following command:

$ meteor deploy my-app-name


This would ask us to register a Meteor developer account and deploy our app at http://my-app-name.meteor.com.
For a full introduction on how to deploy a Meteor app, refer to Chapter 10, Deploying Our App.
In the Appendix, you can find a full list of Meteor commands and their explanations.


Summary



In this chapter, we learned what Meteor requires to run, how to create a Meteor application, and how the build process works.
We understand that Meteor's folder structure is rather flexible, but that there are special folders such as the client, server, and lib folder, which are loaded in different places and order. We also saw how to add packages and how to use the Meteor command-line tool.
If you want to dig deeper into what we've learned so far, take a look at the following parts of the Meteor documentation:
	https://www.meteor.com/projects
	https://www.meteor.com/tool
	https://docs.meteor.com/#/full/whatismeteor
	https://docs.meteor.com/#/full/structuringyourapp
	https://docs.meteor.com/#/full/usingpackages
	https://docs.meteor.com/#/full/assets
	https://docs.meteor.com/#/full/commandline


You can find this chapter's code examples at https://www.packtpub.com/books/content/support/17713 or on GitHub at https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter1.
Now that we've set up our project's basic folder structure, we are ready to start with the fun part of Meteor—templates.

Chapter 2. Building HTML Templates



After we successfully installed Meteor and set up our folder structure, we can now start building the basic templates for our blog.
In this chapter, we will learn how templates are built. We will see how to display data and how some parts can be altered using helper functions. We will take a look on adding events, using conditions, and understanding data contexts, all in templates.
The following is an overview of what will be covered in this chapter:
	The basic template structure
	Displaying data
	Writing template helper functions
	Using conditions in templates
	Data contexts and how those can be set
	Nesting templates and data context inheritance
	Adding events
	Building block helpersNote
If you jump right into this chapter without setting up the folder structure in the Chapter 1, Getting Started with Meteor, download the previous chapter's code examples from either the book's web page at https://www.packtpub.com/books/content/support/17713 or from the GitHub repository at https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter1.
These code examples will also contain all the style files, so we don't have to worry about adding CSS code along the way.





Writing templates in Meteor



Normally when we build websites, we build the complete HTML on the server side. This was quite straightforward; every page is built on the server, then it is sent to the client, and at last JavaScript added some additional animation or dynamic behavior to it.
This is not so in single-page apps, where every page needs to be already in the client's browser so that it can be shown at will. Meteor solves this problem by providing templates that exists in JavaScript and can be placed in the DOM at some point. These templates can have nested templates, allowing for an easy way to reuse and structure an app's HTML layout.
Since Meteor is so flexible in terms of folder and file structure, any *.html page can contain a template and will be parsed during Meteor's build process. This allows us to put all templates in the my-meteor-blog/client/templates folder, which we created in the Chapter 1, Getting Started with Meteor. This folder structure is chosen as it helps us organizing templates when our app grows.
Meteor's template engine is called 
Spacebars, which is a derivative of the handlebars template engine. Spacebars is built on top of 
Blaze, which is Meteor's reactive DOM update engine.
Note
Blaze can generate reactive HTML directly using its API, though it's more convenient to use Meteor's Spacebars or a third-party template language built on top of Blaze such as Jade for Meteor.
For more detail about Blaze, visit https://docs.meteor.com/#/full/blaze and https://github.com/mquandalle/meteor-jade.


What makes Spacebars so exciting is its simplicity and reactivity. Reactive templates mean that some parts of the template can automatically change when the underlying data changes. There is no need of manual DOM manipulation and inconsistent interfaces belong to the past. To get a better understanding of Meteor, we will start with the basic HTML files for our app:
	Let's create an index.html file in our my-meteor-blog/client folder with the following lines of code:<head>
  <title>My Meteor Blog</title>
</head>
<body>
  Hello World
</body>

Note
Note that our index.html file doesn't contain the <html>...</html> tags, as Meteor gathers all <head> and <body> tags in any file and builds up its own index.html file, which will be delivered to the user. Actually, we can also name this file myapp.html.



	Next, we run our Meteor app from the command line by typing the following command:
$ cd my-meteor-blog
$ meteor


This will start a Meteor server with our app running.

	That's it! We can open our browser, navigate to http://localhost:3000, and we should see Hello World.


What happens here is that Meteor will look through all the HTML files available in our app's folder, concatenating the content of all <head> and <body> tags, which it finds and serve them to the clients as its index file.
If we take a look at the source code of our app, we will see that the <body> tag is empty. This is because Meteor sees the content of the <body> tag as its own templates, which will be injected with its corresponding JavaScript template when the DOM is loaded.
Note
To see the source code, don't use the Developer Tools' elements panel, as this will show us the source code after the JavaScript is executed. Right-click on the website instead and select View page source in Chrome.


We will also see that Meteor already linked all kinds of JavaScript files in our <head> tag. These are Meteor's core packages and our add third-party packages. In production, these files will be concatenated into one. To see this in action, go to the terminal, quit our running Meteor server using Ctrl + C, and run the following command:

$ meteor --production


If we now take a look at the source code, we will see that there is only one cryptic-looking JavaScript file linked.
For the next steps, it is better to go back to our developer mode by simply quitting Meteor and running the meteor command again, since this will reload the app faster when file changes occur.


Building the basic templates



Now, let's add the basic templates to our blog by creating a file called layout.html in the my-meteor-blog/client/templates folder. This template will serve as the wrapper template for our blog layout. To build the basic templates, perform the following steps:
	Add the following lines of code to layout.html, which we just created:<template name="layout">
  <header>
    <div class="container">
      <h1>My Meteor Single Page App</h1>
      <ul>
        <li>
          <a href="/">Home</a>
        </li>
        <li>
          <a href="/about">About</a>
        </li>
      </ul>
    </div>
  </header>

  <div class="container">
    <main>
    </main>
  </div>
</template>


	Next, we will create the home page template, which will later list all our blogs posts. In the same templates folder as layout.html, we will create a file named home.html with the following lines of code:<template name="home">
{{#markdown}}
## Welcome to my Blog
Here I'm talking about my latest discoveries from the world of JavaScript.
{{/markdown}}
</template>


	The next file will be a simple About page and we save it as about.html with the following code snippet:<template name="about">
{{#markdown}}
## About me
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud **exercitation ullamco** laboris nisi ut aliquip ex ea commodo
consequat.

Link to my facebook: [facebook.com][1]

[1]: http://facebook.com
{{/markdown}}
</template>

As you can see, we used a {{#markdown}} block helper to wrap our texts. The curly braces are handlebars syntax, which Blaze uses to bring logic to the HTML. The {{#markdown}}...{{/markdown}} block will transform all markdown syntax inside into HTML when the template gets rendered.
Note
The markdown text cannot be indented as we do with the HTML tags because the markdown syntax interprets indentation as code.



	To be able to use {{#markdown}} block helper, we need to first add the markdown core package to our app. To do this, we quit our running app in the terminal using Ctrl + C and type the following command:
$ meteor add markdown



	Now we can run the meteor command again to start our server.


However, when we now go to our browser, we will still see Hello World. So how can we make now our templates visible?

Adding templates and partials



To show the home template in the app, we need to open index.html, which we created earlier, and perform the following steps:
	We replace Hello World with the following template inclusion helper:{{> layout}}


	If we go back to our browser now, we see that the text is gone and the layout template, which we created earlier, has appeared with its header and menu.
	To complete the page, we need to show the home template in the layout template. We do this by simply adding another template inclusion helper to the main section of the layout template in our layout.html file, as follows:<main>
  {{> home}}
</main>


	If we go back to the browser, we should see the following screenshot:[image: Adding templates and partials]



If we would now switch {{> home}} for {{> about}}, we would see our about template instead.

Displaying data with template helpers



Each template can have functions, which are called template helpers, and they can be used inside the template and child templates.
In addition to our custom helper functions, there are three callback functions that are called when the template is created, rendered, and destroyed. To display data with template helpers, perform the following steps:
	To see the three callback functions in action, let's create a file called home.js and save it to our my-meteor-blog/client/templates/ folder with the following code snippet:Template.home.created = function(){
  console.log('Created the home template');
};
Template.home.rendered = function(){
  console.log('Rendered the home template');
};

Template.home.destroyed = function(){
  console.log('Destroyed the home template');
};

If we now open the console of our browser, we will see the first two callbacks are being fired. The last one will only fire if we dynamically remove the template.

	To display data in the home template, we will create a helper function that will return a simple string as follows:Template.home.helpers({
  exampleHelper: function(){
    return 'This text came from a helper with some <strong>HTML</strong>.';
  }
});


	Now if we go to our home.html file, add the {{exampleHelper}} helper after the {{markdown}} block helper, and save the file, we will see the string appearing in our browser, but we will notice that the HTML is escaped.
	To make Meteor render the HTML correctly, we can simply replace the double curly braces with triple curly braces, as shown in the following line of code, and Blaze won't let the HTML escape:{{{exampleHelper}}}

Note
Note that in most of our templates helper, we shouldn't use triple stache {{{...}}} as this opens the door for XSS and other attacks. Only use it if the HTML returned is safe to be rendered.



	Additionally, we can return unescaped HTML using double curly braces, but we need to return the string passed through the SpaceBars.SafeString function, as shown in the following example:Template.home.helpers({
  exampleHelper: function(){
    return new Spacebars.SafeString('This text came from a helper with some <strong>HTML</strong>.');
  }
});





Setting the data context for a template



Now that we've seen how we can display data using a helper, let's see how we can set the whole data context of a template:
	For the next examples, we will create a file called examples.html in our my-meteor-blog/client/templates folder and add the following code snippet:<template name="contextExample">
  <p>{{someText}}</p>
</template>


	Now that we have our contextExample template, we can add it to our home template by passing some data as follows:{{> contextExample someText="I was set in the parent template's helper, as an argument."}}

This will show the text in the contextExample template because we were displaying it using {{someText}}.
Tip
Remember that filenames don't really matter as Meteor is collecting and concatenating them anyway; however, the template name matters since we use this to reference templates.


Setting the context in HTML is not very dynamic, as it is hardcoded. To be able to dynamically change the context, it is better to set it using a template helper function.

	To do this, we must first add the helper to our home templates helpers, which returns the data context, as follows:Template.home.helpers({
  // other helpers ...
  dataContextHelper: function(){
    return {
      someText: 'This text was set using a helper of the parent template.',
      someNested: {
        text: 'That comes from "someNested.text"'
      }
    };
  }
});


	Now we can add this helper as the data context to our contextExample template inclusion helper, as follows:{{> contextExample dataContextHelper}}


	Also, to show the nested data object we return, we can use Blaze dot syntax in the contextExample template by adding the following line of code to the template:<p>{{someNested.text}}</p>




This will now display both the someText and the someNested.text, which was returned by our helper functions.
Using the {{#with}} block helper



Another way of setting the data context is by using the {{#with}} block helper. The following code snippet has the same result as the former inclusion helper that utilizes the helper function:
{{#with dataContextHelper}}
  {{> contextExample}}
{{/with}}

We would even get the same results in the browser when we don't use a subtemplate and just add the content of the contextExample template inside the {{#with}} block helper, as follows:
{{#with dataContextHelper}}
  <p>{{someText}}</p>
  <p>{{someNested.text}}</p>
{{/with}}



"this" in template helpers and template callbacks



In Meteor, this in template helpers is used differently in template callbacks such as created(), rendered(), and destroyed().
As already mentioned, templates have three callback functions that are fired in different states of the template:
	created: This fires when the template gets initiated but is not yet in the DOM
	rendered: This fires when the template and all its sub templates are attached to the DOM
	destroyed: This fires when the template is removed from the DOM and before the instance of the template gets destroyed


In these callback functions, this refers to the current template instance. The instance object can access the templates DOM and comes with the following methods:
	this.$(selectorString): This method finds all elements that match selectorString and returns a jQuery object from those elements.
	this.findAll(selectorString): This method finds all elements that match selectorString, but returns the plain DOM elements.
	this.find(selectorString): This method finds the first element that matches selectorString and returns a plain DOM element.
	this.firstNode: This object contains the first element in the template.
	this.lastNode: This object contains the last element in the template.
	this.data: This object contains the templates data context
	this.autorun(runFunc): A reactive Tracker.autorun() function that is stopped when the template instance is destroyed.
	this.view: This object contains the Blaze.View instance for this template. Blaze.View are the building blocks of reactive templates.


Inside helper functions, this refers only to the current data context.
To make these different behaviors visible, we will take a look at some examples:
	When we want to access the DOM of a template, we must do it in the rendered callback because only at this point, the template elements will be in the DOM. To see it in action, we edit our home.js file as follows:Template.home.rendered = function(){
  console.log('Rendered the home template');

  this.find('p').innerHTML = 'We just replaced that text!';
};

This will replace the first p tag that is created by the {{#markdown}} block helper, which we put there before, with the string we set. Now when we check the browser, we will see that the first <p> tag that contained our blog's introduction text has been replaced.

	For the next example, we need to create an additional template JavaScript file for our contextExample template. To do this, we create a new file called examples.js in our templates folder and save it using the following code snippet:Template.contextExample.rendered = function(){
  console.log('Rendered Context Example', this.data);
};

Template.contextExample.helpers({
  logContext: function(){
    console.log('Context Log Helper', this);
  }
});

This will add the rendered callback as well as a helper called logContext to our contextExample template helpers. To make this helper run, we also need to add this helper to our contextExample template as follows:
<p>{{logContext}}</p>




When we now go back to the console of our browser, we see that the data context object has been returned for all the rendered callbacks and helpers from our rendered contextTemplates template. We can also see that helpers will run before the rendered callback.
Note
In case you need access to the templates instance from inside a template helper, you can use Template.instance() to get it.


Now let's use make our template interactive using events.

Adding events



To make our template a bit more dynamic, we will add a simple event, which will reactively rerun the logContext helper we created earlier.
First, however, we need to add a button to our contextExample template:
<button>Get some random number</button>

To catch the click event, open examples.js and add the following event function:
Template.contextExample.events({
  'click button': function(e, template){
    Session.set('randomNumber', Math.random(0,99));
  }
});

This will set a session variable called randomNumber to a random number.
Note
We will talk in depth about sessions in the next chapter. For now, we only need to know that when a session variable changes, all functions that get that session variable using Session.get('myVariable') will run again.


To see this in action, we will add a Session.get() call to the logContext helper, and return the former set's random number as follows:
Template.contextExample.helpers({
  logContext: function(){
    console.log('Context Log Helper',this);

    return Session.get('randomNumber');
  }
});

If we go to the browser, we will see the Get some random number button. When we click on it, we see a random number appearing just above the button.
Note
When we use the contextTemplates template multiple times in our home template, we will see that each instance of that template helper will display the same random number. This is because the session object will rerun all its dependencies, all of which are instances of the logHelper helper.


Now that we have covered template helpers, let's create a custom block helper.

Block helpers



Block helpers are templates that wrap the content of the block. They can be used to show content in different ways depending on conditions, or they can be used to add extra functionality to the blocks content, for example, some JavaScript calculation on its DOM elements.
In the following example, we will build a simple block helper that will show content based on a Boolean condition.
To do this, we will to add the following code snippet at the end of our example.html file:
<template name="blockHelperExample">
  <div>
    <h1>My Block Helper</h1>
    {{#if this}}
      <p>Content goes here: {{> Template.contentBlock}}</p>
    {{else}}
      <p>Else content here: {{> Template.elseBlock}}</p>
    {{/if}}
  </div>
</template>

The {{> Template.contentBlock}} is a predefined placeholder for the block's content. The same applies for {{> Template.elseBlock}}.
When this (in this example, we use the template's context as a simple Boolean) is true, it will show the given Template.contentBlock. Otherwise, it will show the Template.elseBlock content.
To see how we can use the recently created template as a block helper, take a look at the following example, which we can add to home template:
{{#blockHelperExample true}}
  <span>Some Content</span>
{{else}}
  <span>Some Warning</span>
{{/blockHelperExample}}

Now we should see the following screenshot:
[image: Block helpers]
When we now change true, which we pass to {{#blockHelperExample}}, to false, we should see the content after the {{else}} instead.
We can also use a helper function to replace the Boolean value, so that we can switch the block helper dynamically. Additionally, we can pass key-value arguments and access them by their key inside the block helper template, as shown in the following code example:
{{#blockHelperExample myValue=true}}
...
{{/blockHelperExample}}

We can also access the given argument by its name in the block template as follows:
<template name="blockHelperExample">
  <div>
    <h1>My Block Helper</h1>
    {{#if myValue}}
    ...
    {{/if}}
  </div>
</template>

Note
Note that the data context for the block's content will be the one from the template in which the block appears, not the one of the block helper template itself.


Block helpers are a powerful tool because they allow us to write self-contained components that, when packed into a package, can be used as a drop-in-place functionality by others. This feature has the potential to allow for a vibrant marketplace, like the marketplace we see in jQuery plugins.

Listing posts



Now that we have walked through all ways of using helpers and data, I want to introduce a block helper named {{#each}}, which we will probably find the most useful.
If we go through all the examples completed up to now, we can see that it is better to delete all the examples of data context from our home template, the examples.html file, and its examples.js JavaScript file so that we can continue to build our blog cleanly.
The next step is to add a list of blog entries to our home page. For this, we need to create a template for a post preview. This can be done by performing the following steps:
	We create a file called postInList.html in our my-meteor-blog/client/templates folder and save it with the following code snippet:<template name="postInList">
  <div class="postListItem">
    <h2><a href="#">{{title}}</a></h2>
    <p>{{description}}</p>
    <div class="footer">
      Posted by {{author}}
    </div>
  </div>
</template>

This template will be used for each post we display in the home page.

	To make it appear, we need to add a {{#each}} helper to the home template, as follows:{{#each postsList}}
  {{> postInList}}
{{/each}}

When the postsList helper, which we pass to the {{#each}} block helper, returns an array, the content of {{#each}} will be repeated for each item in the array, setting the array item as the data context.

	To see this in action, we add the postsList helper in our home.js file to the template helpers, as follows:Template.home.helpers({
  // other helpers ...
  postsList: function(){
    return [
      {
        title: 'My Second entry',
        description: 'Borem sodum color sit amet, consetetur sadipscing elitr.',
        author: 'Fabian Vogelsteller',
        timeCreated: moment().subtract(3, 'days').unix()
      },
      {
        title: 'My First entry',
        description: 'Lorem ipsum dolor sit amet, consetetur sadipscing elitr.',
        author: 'Fabian Vogelsteller',
        timeCreated: moment().subtract(7, 'days').unix()
      }
    ];
  }
});


	As we can see, we return an array where each item is an object containing our post's data context. For timeCreated, we use the moment function of our previously added third-party package. This will generate dummy timestamps of a few days in the past. If we now go to our browser, we will see the two posts listed, as shown in the following screenshot:[image: Listing posts]

	To display timeCreated from our post item in the correct format, we need to create a helper function to format the timestamp. However, because we want to use this helper in other templates later, we need to make it a global helper that can be accessed by any template. To do this, we create a file named template-helpers.js and save it to our my-meteor-blog/client folder, as it doesn't belonging to any specific template.
	To register a global helper, we can use Meteor's Template.registerHelper function:Template.registerHelper('formatTime', function(time, type){
  switch(type){
    case 'fromNow': 
      return moment.unix(time).fromNow();
    case 'iso':
      return moment.unix(time).toISOString();
    default:
      return moment.unix(time).format('LLLL');
  }
});


	Now, we only have to add the helper to our postInList template by replacing the content of the footer with the following code snippet:<div class="footer">
  <time datetime="{{formatTime timeCreated "iso"}}">Posted {{formatTime timeCreated "fromNow"}} by {{author}}</time>
</div>




Now, if we save both the files and go back to our browser, we will see a relative date added to our blog post's footer. This works because we pass the time and a type string to the helper, as follows:
{{formatTime timeCreated "fromNow"}}

The helper then returns the formatted date using a moment function.
With this global helper, we can now format any Unix timestamp, in any template to relative times, ISO time strings, and a standard date format (using the LLLL format, which converts to Thursday, September 4, 1986, 8:30 P.M.).
Now that we have already used the {{#with}} and {{#each}} block helpers, let's take a look at the other default helpers and syntax that Blaze uses.

Spacebars syntax



To wrap it all up, lets summarize the Spacebars syntax:
	
Helper

	
Description


	
{{myProperty}}

	
The template helper can be a property from the template's data context or a template helper function. If a helper function and a property with the same name exist, the template helper will use the helper function instead.


	
{{> myTemplate}}

	
The inclusion helper is for a template and always expects a template object or null.


	
{{> Template.dynamic template=templateName [data=dataContext]}}

	
With the {{> Template.dynamic ...}} helper, you can render a template dynamically by providing a template helper returning a template name for the template parameter. When the helper would rerun and return a different template name, it will replace the template on this position with the new one.


	
{{#myBlockHelper}}

...

{{/myBlockHelper}}

	
A block helper that contains both HTML and the Spacebars syntax.




By default, Spacebars comes with the following four default block helpers:
	{{#if}}..{{/if}}
	{{#unless}}..{{/unless}}
	{{#with}}..{{/with}}
	{{#each}}..{{/each}}


The 
{{#if}} block helper allows us to create simple conditions, as follows:
{{#if myHelperWhichReturnsABoolean}}
  <h1>Show me this</h1>
{{else}}
  <strong>If not<strong> show this.
{{/if}}

The 
{{#unless}} block helper works the same as {{#if}}, but with swapped logic.
The 
{{#with}} block, as seen earlier, will set a new data context to its content and containing templates, and the {{#each}} block helper will render multiple times, setting a different data context for each iteration.
Accessing parent data contexts



To complete our journey through the Spacebars syntax, let's take a closer look at the template helper syntax that we used to display data. As we've already seen, we can display data using the double curly braces syntax, as follows:
{{myData}}

Inside this helper, we can access the properties of an object using the dot syntax:
{{myObject.myString}}

We can also access a parent data context using a path-like syntax:
{{../myParentsTemplateProperty}}

Additionally, we can move more than just one context up:
{{../../someParentProperty}}

This feature allows us to be very flexible about the data context.
Note
If we want to do the same from inside a template helper, we can use the Template API Template.parentData(n), where n is the number of steps up to access the data context of parent templates.
Template.parentData(0) is the same as Template.currentData(), or this if we are in a template helper.



Passing data to helpers



Passing data to helpers can be done in two different ways. We can pass arguments to a helper as follows:
{{myHelper "A String" aContextProperty}}

Then, we can access it in the helper as follows:
Template.myTemplate.helpers({
   myHelper: function(myString, myObject){
     // And we get:
     // myString = 'aString'
     // myObject = aContextProperty
   }
});

Besides this, we can pass data in the form of key-values:
{{myHelper myString="A String" myObject=aDataProperty}}

This time, however, we need to access them as follows:
Template.myTemplate.helpers({
   myHelper: function(Parameters){
     // And we can access them:
     // Parameters.hash.myString = 'aString'
     // Parameters.hash.myObject = aDataProperty
   }
});

Be aware that block and inclusion helpers act differently because they always expect objects or key-values as arguments:
{{> myTemplate someString="I will be available inside the template"}}

// Or

{{> myTemplate objectWithData}}

If we want to pass only a single variable or value to an inclusion or block helper, Meteor would objectify the argument, as we can see with the following code snippet:
{{#myBlock "someString"}}
...
{{/myBlock}}

We would then need to typecast the passed argument if we want to use it in a helper function as follows:
Template.myBlock.helpers({
   doSomethingWithTheString: function(){
     // Use String(this), to get the string
     return this;
   }
});

Beisdes, we can also simply display the string in our block helper template using {{Template.contentBlock}} as follows:
<template name="myBlock">
  <h1>{{this}}</h1>
  {{Template.contentBlock}}
</template>

We can also pass another template helper as an argument to an inclusion or block helper, as shown in the following example:
{{> myTemplate myHelperWhichReturnsAnObject "we pass a string and a number" 300}}

Though passing data to template helpers and inclusion/block helpers are slightly different, arguments can be quite flexible when using helpers to generate them.


Summary



Reactive templates are one of the most impressive features of Meteor, and once we get used to them, we probably won't look back to manual DOM manipulation anymore.
After reading this chapter, we should know how to write and use templates in Meteor. We should also understand its basic syntax and how to add templates.
We saw how to access and set data in templates and how to use helpers. We learned about different types of helpers, such as inclusion helpers and block helpers. We also built our own custom block helpers and used Meteor's default helpers.
We learned that templates have three different callbacks, for when the template gets created, rendered, and destroyed.
We learned how to pass data to helpers, and how this differs in normal helpers and block helpers.
To dig deeper, take a look at the following documentations:
	https://docs.meteor.com/#/full/templates_api
	https://www.meteor.com/blaze
	https://docs.meteor.com/#/full/blaze
	https://atmospherejs.com/meteor/spacebars
	http://momentjs.com


You can find this chapter's code examples either at https://www.packtpub.com/books/content/support/17713 or on GitHub at https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter2.
With all this new knowledge about templates, we are ready to add data to our database and see how we can display it in our home page.

Chapter 3. Storing Data and Handling Collections



In the previous chapter, we learned how to build templates and display data in them. We built the basic layout of our app and listed some post examples on the front page.
In this chapter, we will add post examples persistently to our database on the server. We will learn how we can access this data later on the client and how Meteor syncs data between clients and the server.
In this chapter, we'll cover the following topics:
	Storing of data in Meteor
	Creating collections
	Adding data to a collection
	Querying data from a collection
	Updating data in a collection
	What "database everywhere" means
	The difference between the server's and the client's databasesNote
If you've jumped right into the chapter and want to follow the examples, download the previous chapter's code examples from either the book's web page at https://www.packtpub.com/books/content/support/17713 or from the GitHub repository at https://github.com/frozeman/book-building-single-page-web-apps-with-meteor/tree/chapter2.
These code examples will also contain all the style files, so we don't have to worry about adding CSS code along the way.





Meteor and databases



Meteor currently uses MongoDB by default to store data on the server, although there are drivers planned for use with relational databases too.
Note
If you are adventurous, you can try one of the community-built SQL drivers, such as the numtel:mysql package from https://atmospherejs.com/numtel/mysql.


MongoDB is a NoSQL database. This means it is based on a flat document structure instead of a relational table structure. Its document approach makes it ideal for JavaScript as documents are written in BJSON, which is very similar to the JSON format.
Meteor has a database everywhere approach, which means that we have the same API to query the database on the client as well as on the server. Yet, when we query the database on the client, we are only able to access the data that we published to a client.
MongoDB uses a data structure called 
collection, which is the equivalent of a table in a SQL database. Collections contain documents, where each document has its own unique ID. These documents are JSON-like structures and can contain properties with values, even with multiple dimensions, as follows:
{
  "_id": "W7sBzpBbov48rR7jW",
  "myName": "My Document Name",
  "someProperty": 123456,
  "aNestedProperty": {
    "anotherOne": "With another string"
  }
}

These collections are used to store data in the server's MongoDB as well as the client-side minimongo collection, which is an in-memory database mimicking the behavior of the real MongoDB.
Note
We'll discuss more about minimongo at the end of this chapter.


The MongoDB API allows us to use a simple JSON-based query language to get documents from a collection. We can pass additional options to only ask for specific fields or sort the returned documents. These are very powerful features, especially on the client side, to display data in various ways.


Setting up a collection



To see all this in action, let's get right on it by creating our first collection.
We create a file called collections.js inside our my-meteor-blog folder. We need to create it in the root folder so that it will be available on both the client and the server. Now let's add the following line of code to the collections.js file:
Posts = new Mongo.Collection('posts');

This will make the Posts variable globally available, as we haven't used the var keyword, which would restrict it to the scope of this file.
Mongo.Collection is the API used to query the database and it comes with the following basic methods:
	insert: This method is used to insert documents into the database
	update: This method is used to update documents or parts of them
	upsert: This method is used to insert or update documents or parts of them
	remove: This method is used to delete documents from the database
	find: This method is used to query the database for documents
	findOne: This method is used to return only the first matched document



Adding post examples



To query the database for posts, we need to add some post examples. This has to be done on the server, as we want to add them persistently. To add an example post, perform the following steps:
	We create a file called main.js inside our my-meteor-blog/server folder. Inside this file, we will use the Meteor.startup() function to execute the code on the start of the server.
	We then add the post example, but only when the collection is empty. So to prevent this, we add them every time we restart the server, as follows:Meteor.startup(function(){

  console.log('Server started');

  // #Storing Data -> Adding post examples
  if(Posts.find().count() === 0) {

    console.log('Adding dummy posts');
    var dummyPosts = [
      {
        title: 'My First entry',
        slug: 'my-first-entry',
        description: 'Lorem ipsum dolor sit amet.',
        text: 'Lorem ipsum dolor sit amet...',
        timeCreated: moment().subtract(7,'days').unix(),
        author: 'John Doe'
      },
      {
        title: 'My Second entry',
        slug: 'my-second-entry',
        description: 'Borem ipsum dolor sit.',
        text: 'Lorem ipsum dolor sit amet...',
        timeCreated: moment().subtract(5,'days').unix(),
        author: 'John Doe'
      },
      {
        title: 'My Third entry',
        slug: 'my-third-entry',
        description: 'Dorem ipsum dolor sit amet.',
        text: 'Lorem ipsum dolor sit amet...',
        timeCreated: moment().subtract(3,'days').unix(),
        author: 'John Doe'
      },
      {
        title: 'My Fourth entry',
        slug: 'my-fourth-entry',
        description: 'Sorem ipsum dolor sit amet.',
        text: 'Lorem ipsum dolor sit amet...',
        timeCreated: moment().subtract(2,'days').unix(),
        author: 'John Doe'
      },
      {
        title: 'My Fifth entry',
        slug: 'my-fifth-entry',
        description: 'Korem ipsum dolor sit amet.',
        text: 'Lorem ipsum dolor sit amet...',
        timeCreated: moment().subtract(1,'days').unix(),
        author: 'John Doe'
      }
    ];
    // we add the dummyPosts to our database
    _.each(dummyPosts, function(post){
      Posts.insert(post);
    });
  }
});





OEBPS/graphics/PacktLibLogo.jpg


OEBPS/graphics/8129OS_01_01.jpg


OEBPS/graphics/8129OS_02_02.jpg


OEBPS/cover/cover.jpg


OEBPS/graphics/8129OS_02_01.jpg


OEBPS/graphics/8129OS_02_03.jpg


